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Abstract. We study the Boltzmann equation without Grad’s an-
gular cut-off assumption. We introduce a suitable renormalized for-
mulation, which allows the cross-section to be singular in both the
angular and the relative velocity variables. Angular singularities
occur as soon as one is interested in long-range interactions, while
singularities in the relative velocity variable occur in the study of
soft potentials, in particular Coulomb interaction. Together with
several new estimates, this new formulation enables us to prove
existence of weak solutions, and to give a proof of a conjecture
by Lions (appearance of strong compactness) under general, fully
realistic assumptions.
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1. Introduction

Since the work of DiPerna and Lions [23] on the Cauchy problem
for the Boltzmann equation, ten years ago, it has been a well-known
open problem to extend their theory to physically realistic long-range
interactions – one major motivation coming from plasma physics, where
Coulomb interactions naturally arise. Here we shall give an almost
complete solution to this problem, and introduce several new tools on
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this occasion. Before explaining our methods and results, let us give a
detailed presentation of the problem and its motivations. The equation
that we study here is the Boltzmann equation

(1)
∂f

∂t
+ v · ∇xf = Q(f, f),

where the unknown f(t, x, v) is a nonnegative integrable function. For
each time t ≥ 0, f(t, ·, ·) stands for the density of particles in phase
space : position x ∈ RN or TN (the N -dimensional torus), and velocity
v ∈ RN , N ≥ 2. Moreover, Q is the Boltzmann collision operator,
which acts only on the velocity dependence of f (this reflects the phys-
ical assumption that collisions are localized in space and time),

(2) Q(f, f) =

∫

RN

dv∗

∫

SN−1

dσ B(v − v∗, σ)(f ′f ′∗ − ff∗).

Here f ′ = f(v′) and so on (t, x are only parameters), and the formulas

(3)





v′ =
v + v∗

2
+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
− |v − v∗|

2
σ

yield one convenient parametrization of the set of solutions to the laws
of elastic collision

(4)

{
v′ + v′∗ = v + v∗
|v′|2 + |v′∗|2 = |v|2 + |v∗|2.

The velocities v′ and v′∗ should be thought of as the possible precol-
lisional velocities of particles which in a collision process acquire new
velocities v and v∗. On physical grounds, the nonnegative (a.e. finite)
weight function B(v−v∗, σ), called the cross-section, is assumed to de-
pend only on |v−v∗| (modulus of the relative velocity) and on the scalar
product ( v−v∗

|v−v∗| , σ) (cosine of the deviation angle). For a given interac-

tion model, the cross-section can be computed in a semi-explicit way
by the solution of a classical scattering problem, see for instance [13].

We shall write indifferently a · b or (a, b) for the scalar product of a
and b, and use the notations

(5) k =
v − v∗
|v − v∗| , k · σ = cos θ, 0 ≤ θ ≤ π.

Without loss of generality we shall assume that B(v−v∗, σ) is supported
in the set (0 ≤ θ ≤ π/2), i.e. (v − v∗, σ) ≥ 0. If not, we can reduce to
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this case upon replacing B by its symmetrized version

B(v − v∗, σ) = [B(v − v∗, σ) + B(v − v∗,−σ)]1(v−v∗,σ)>0.

This is a consequence of the undiscernability of particles. More compli-
cated models are possible, for instance with a self-consistent mean-field
force, but this does not affect the key analytical difficulties related to
equation (1) : see the discussion and arguments in Lions [37].

In all the sequel, we shall consider only the case when x varies in
RN , and we simply point out that all the analysis adapts trivially to
the case of the torus. We also fix once for all an arbitrary time interval
[0, T ].

Known a priori estimates for solutions of (1) are based mainly on
the following fundamental physical laws :

- conservation of the total mass, momentum, energy :

d

dt

∫

RN×RN

f(t, x, v)




1
v
|v|2
2


 dx dv = 0;

- decrease of entropy (Boltzmann’s celebrated H-theorem), which fol-
lows from the well-known formal identity

(6)
d

dt

∫

RN×RN

f(t, x, v) log f(t, x, v) dx dv

= −1

4

∫

RN

dx

∫

R2N

dv dv∗

∫

SN−1

dσ B(v − v∗, σ)(f ′f ′∗ − ff∗) log
f ′f ′∗
ff∗

.

Notations : Given a nonnegative function f(x, v), we shall denote by

(7) H(f) =

∫

RN
x ×RN

v

f log f

the standard Boltzmann H-functional, or entropy, and we set

L log L(RN
x ×RN

v ) =

{
f ∈ L1(RN

x × RN
v ) ;

∫

RN×RN

|f | log(1 + |f |) dx dv < +∞
}

,

with the associated natural Orlicz norm. Also, given a nonnegative
function f(v), we let

(8) D(f) =
1

4

∫

R2N

dv dv∗

∫

SN−1

dσ B(v − v∗, σ)(f ′f ′∗ − ff∗) log
f ′f ′∗
ff∗

stand for the (nonnegative) entropy dissipation functional associated
to f .
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Finally, using the properties of the transport operator, it is also very
easy to obtain a (local in time) estimate on∫

RN×RN

f(t, x, v) |x|2 dx dv.

Here is a rough bound, derived from (d/dt)
∫

f |x− vt|2 dx dv = 0 :∫
f(t, x, v)|x|2 dx dv ≤ 2

∫
f(0, x, v)|x|2 dx dv+2t2

∫
f(0, x, v)|v|2 dx dv.

At the end of the eighties, DiPerna and Lions [22, 23] showed that
the resulting estimates, namely

(9) f ∈ L∞t
(
[0, T ]; L1

x,v((1 + |v|2 + |x|2) dx dv) ∩ L log L(RN
x × RN

v )
)
,

(10) D(f) ∈ L1([0, T ]× RN
x )

were sufficient to build a mathematical theory of weak solutions – there
called renormalized solutions – to equation (1), in the following sense.

Definition 1. A nonnegative function f ∈ C(R+; L1(RN
x × RN

v )) is
called a renormalized solution of the Boltzmann equation (1) if for all
nonlinearity β ∈ C1(R+,R+), such that β(0) = 0, β′(f) ≤ C/(1 + f),

(11)
∂β(f)

∂t
+ v · ∇xβ(f) = β′(f)Q(f, f),

in the sense of distributions.

Their main assumption on the cross-section was Grad’s angular cut-
off, namely that the cross-section be integrable, locally in all variables.
More precisely, they assumed

(12) A(z) ≡
∫

SN−1

B(z, σ) dσ ∈ L1
loc(RN),

together with a condition of mild growth of A as |z| → ∞ : essentially,

(13) A(z) = o(|z|2) as |z| → ∞.

Apart from weak compactness estimates, the analysis of DiPerna and
Lions made crucial use of

- 1) a renormalized formulation, which is a distributionally meaning-
ful definition of β′(f)Q(f, f) under the above a priori estimates and
Grad’s angular cut-off assumption;

- 2) the so-called averaging lemmas [28, 29, 26], which express com-
pactness or smoothness properties in (t, x) of the velocity-averages of
solutions of transport equations.

Here is how the renormalized formulation was achieved : follow-
ing a longstanding tradition in kinetic theory, one splits the collision
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operator (2) into a positive (“gain”) and a negative (“loss”) part :
Q = Q+ −Q−, where

Q+(f, f) =

∫

RN

dv∗

∫

SN−1

dσ B(v − v∗, σ)f ′f ′∗,

Q−(f, f) = f(A ∗v f).

Then, one notes that under the assumptions on β in Definition 1,

(14) β′(f)Q−(f, f) ≤ Cf

1 + f
(A ∗ f)

lies in L∞([0, T ]; L1
loc(RN

x ×RN
v )). Finally, integrating equation (11) in

all variables, one finds the additional a priori estimate

(15) β′(f)Q+(f, f) ∈ L1
loc([0, T ]× RN

x × RN
v ).

(There is also a more complicated proof of (15), based on the use of
the entropy dissipation estimate).

This simple manipulation is enough to define us “meaningful” weak
solutions of (1). But much work remains to be done in order to prove
that these solutions are stable, in the following sense. From any se-
quence (fn)n∈N of renormalized solutions satisfying the natural bounds
(finite mass, energy, entropy, entropy dissipation)

(16) sup
n∈N

sup
t∈[0,T ]

∫

RN×RN

fn
[
1+|v|2+|x|2+log fn(t, x, v)

]
dx dv < +∞,

(17) sup
n∈N

∫ T

0

∫

RN
x

D(fn) dx dt < +∞,

one can extract a subsequence converging weakly to a renormalized
solution. A simple variant of these arguments shows that, up to ex-
traction, sequences of approximate solutions to (1) converge to renor-
malized solutions to (1), and of course this is enough to prove existence
of such solutions.

Yet, the DiPerna-Lions theorem is certainly best thought of as a —
quite unexpected — stability result under weak convergence. Nothing
is known as concerns the question of propagation of smoothness for
these solutions. The only partial result in this direction is due to Li-
ons [35, 36], who proved that a sequence of renormalized solutions (fn)
is strongly (relatively) compact in L1([0, T ]× RN

x × RN
v ) if and only if

the sequence of corresponding initial data (fn
0 ) is strongly (relatively)

compact in L1(RN
x × RN

v ). In other words, in the cut-off case, no
oscillations develop unless they are present from the begin-
ning. We summarize these results with the following Theorem, due to
DiPerna and Lions :
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Theorem 1. Assume Grad’s angular cut-off (12)–(13). Let (fn)n∈N
be a sequence of renormalized solutions of the Boltzmann equation with
respective initial datum (fn

0 ), satisfying uniform estimates of mass, en-
ergy and entropy, in the sense of (16). Assume without loss of gener-
ality that fn −→ f weakly in Lp([0, T ], L1(RN

x × RN
v )) (1 ≤ p < +∞).

Then

(i) f is a renormalized solution of the Boltzmann equation;

(ii) let f0 denote f(0, ·, ·); then

fn → f strongly if and only if fn
0 → f0 strongly in L1(RN

x × RN
v ).

DiPerna and Lions [25] also proved that if the solutions fn satisfy
the entropy dissipation estimate

(18)

∫ T

0

dt

∫

RN
x

dxD
(
fn(t, x, ·)) ≤ H(fn

0 )−H(fn(T, ·, ·)),

then the limit solution f also satisfies this estimate.
Even though, up to this date, many open questions remain on the

subject of renormalized solutions (uniqueness, smoothness, energy con-
servation), the DiPerna-Lions result has enabled the study of several
physical phenomena, in particular the hydrodynamical limit whose
analysis was later performed by Bardos, Golse and Levermore [9], with
recent spectacular developments by Bardos, Golse, Levermore, Lions,
Masmoudi, Saint-Raymond [10, 27, 30, 40]. Also the result of propa-
gation of compactness is interesting from the physical point of view.

Yet the main restriction on the cross-section, namely Grad’s angular
cut-off (12), is definitely not satisfactory from the physical point of
view — though extremely common in the field ! Indeed, as soon as one
considers long-range interactions, even with a very fast decay at infinity,
this assumption is not satisfied, and the integral in the left-hand side
of (12) is infinite (except maybe for z = 0). The typical example is
that of inverse s-power repulsive forces in dimension 3, which give rise
to a cross-section

B(v − v∗, σ) = |v − v∗|γb(k · σ),

with γ = (s− 5)/(s− 1) and

sin θ b(cos θ) ∼ Kθ−1−ν as θ → 0, ν =
2

s− 1
> 0, K > 0

(see for instance [14]). Here the factor sin θ corresponds to the Jacobian
factor for the integration in spherical coordinates. Thus the function
sin θ b(cos θ) presents a nonintegrable singularity as θ → 0 : this regime
corresponds to grazing collisions, i.e. collisions in which particles are
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hardly deviated. Physically speaking, these are the collisions between
particles that are microscopically very far apart, with a large impact
parameter.

Another complication (often worse, as shown by the experience from
the spatially homogeneous theory [45], and as we shall experience here
again) arises when trying to deal with the Coulomb potential : for s = 2
in dimension N = 3 as above, one finds a cross-section behaving like
|v − v∗|−3 in the relative velocity variable, hence not locally integrable
as a function of the relative velocity (this is the limit, borderline case).
The DiPerna-Lions formulation cannot handle this case which is one of
the most important from the physical points of view.

It is our purpose here to treat both singularities, and extend the
DiPerna-Lions theory to very general, physically realistic long-range
interactions, including the Coulomb potential as a limit case, in a sense
which will be made precise later on. This extension will be made pos-
sible by three new tools :

- a sharp understanding of the smoothness estimates associated with
the entropy dissipation in presence of grazing collisions;

- a better understanding of the cancellation effects associated with
the symmetries of the Boltzmann kernel;

- a new and much subtler procedure of renormalization.
In particular, we shall show how certain simple objects govern several

properties of the Boltzmann collision operator. The most important is
the cross-section for momentum transfer, M , which is defined by

(19)

∫

SN−1

dσ B(v − v∗, σ)[v − v′] = 2(v − v∗)M(|v − v∗|).

Finiteness a.e. of M is a necessary condition for the Boltzmann collision
operator to make sense [46]. Here we shall show that it is also essentially
sufficient, under some weak additional assumptions. From the physical
point of view, this is very good news, because the cross-section for
momentum transfer is one of the basic quantities in the theory of binary
collisions (and its computation via experimental measurements is a
well-developed topic).

On the other hand, the price to pay for such an extension will be a
weakening of the notion of renormalized solution, as follows.

Definition 2. We shall say that a nonnegative function

f ∈ C(R+;D′(RN
x × RN

v )) ∩ L∞(R+; L1((1 + |v|2 + |x|2) , dx , dv))
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is a renormalized solution of the Boltzmann equation with a defect
measure, if for all nonlinearity β ∈ C2(R+,R+) satisfying

(20) β(0) = 0, 0 < β′(f) ≤ C

1 + f
, β′′(f) < 0,

the inequality

(21)
∂β(f)

∂t
+ v · ∇xβ(f) ≥ β′(f)Q(f, f)

holds in the sense of distributions, together with the mass-conservation
condition

(22) ∀t ≥ 0,

∫

RN×RN

f(t, x, v) dx dv =

∫

RN×RN

f(0, x, v) dx dv.

Example : A typical choice for β(f) will be f/(1 + δf), δ > 0.

At this level we do not yet make precise the sense of β′(f)Q(f, f)
in (21), and we only wish to point out that equation (21), combined
with the mass-conservation condition (22), really defines a weak so-
lution and not an upper solution. This can be seen by the following
crude formal argument, which appears first in the work of DiPerna and
Lions [22] on the Fokker-Planck-Boltzmann equation : let µ be the
nonnegative “defect” measure equal to the difference of the left-hand
side and the right-hand side of (21). If f were smooth, multiplication
of both sides of (21) by 1/β′(f) and integration in all variables would
yield∫

f(T, x, v) dx dv =

∫
f(0, x, v) dx dv +

∫

[0,T ]×RN×RN

dµ(t, x, v),

and the mass-conservation would imply the vanishing of µ.
Definition 2 may seem unsatisfactory, in that it introduces an un-

known object (the defect measure), with a priori no physical meaning
at all. Thus it would be desirable to prove, if possible, that the defect
measure automatically vanishes, as is the case for the simpler Fokker-
Planck-Boltzmann model studied by DiPerna and Lions in [22].

However, we must warn the reader that such an achievement would
only be for the sake of elegance : no relevant physical conclusion, no
new estimate would be provided by this result – which seems far out of
reach, because of technical problems that we describe in the Appendix.

On the other hand, our definition is strong enough to prove such
statements as the strong compactification effect, or the Landau ap-
proximation. We also expect that some of the recent progress about
the fluid dynamics limits for the Boltzmann equation (see the above-
mentioned references) can be treated in the framework of renormalized
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solutions with a defect measure (in particular the methods of [10],
which already involve a defect measure).

Thus, we shall build here a theory of renormalized solutions with
a defect measure, and again, following Lions [35], we wish to empha-
size that, even if such a concept of solutions may seem quite weak,
the results that we shall obtain make sense, and are nontrivial, even
for hypothetical strong solutions. In particular, we shall be able to
prove two fundamental qualitative properties of the solutions to the
Boltzmann equation, under very general assumptions (spatially inho-
mogeneous setting; no restriction on the size of the data).

1) the first one, which is the content of the present paper, is the
fact that singular cross-sections induce an immediate damping
of oscillations (Lions’ conjecture), which is at the opposite of the
propagation result in the cut-off case. A precise statement can be
found in the next section.

2) Our second main result, discussed in our companion paper [7], is
the first rigorous mathematical justification of the Landau approxima-
tion in plasma physics. Roughly speaking, this means the replacement
of Boltzmann’s collision operator for the so-called screened Debye po-
tential, by the Landau collision operator for Coulomb potential, in the
limit when the Debye length is very large. Such a result was proven in
Villani [45] in the homogeneous situation, i.e. when distribution func-
tions do not depend on the position x, and we shall extend it in [7]
to the much more delicate x-dependent problem. Since the Boltzmann
operator is meaningless for “bare” Coulomb interaction, this limit pro-
cedure is the right framework to deal with Coulomb collisions.

We end this introduction by briefly discussing recent progress in the
study of longe-range interactions and singular cross-sections.

Until the last few years, and despite substantial efforts, extremely
little was known concerning the Boltzmann equation without cut-off.
Among the main exceptions were the remarks by Pao [41] and Klaus [33]
on the linear Boltzmann operator without cut-off. Some of these re-
marks were actually misleading : for instance Klaus asserts the im-
possibility of using the Boltzmann equation for inverse s-power forces
with s ≤ 3. The other important contribution to the subject was the
proof by Arkeryd [8] of existence of weak solutions to the spatially ho-
mogeneous Boltzmann equation without cut-off, also in the case s > 3.
Then, starting from the mid-nineties, a great deal of works appeared
on the subject, and a lot of progress was made in several parallel di-
rections :
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1. The Cauchy problem associated with the Landau equation was
studied by Lions [38], who proved strong compactness properties of
sequences of approximate solutions, and by Villani [44], who deduced
from this result the existence of suitable weak solutions. The study
of Lions led him to his conjecture on the appearance of strong com-
pactness for the Boltzmann equation without cut-off [36], which he
further explored in his more recent note [39]. Here we shall re-use his
main ideas, and, thanks to the new tools mentioned before, prove his
conjecture in full generality.

2. The theory of weak solutions in the spatially homogeneous case,
initiated by Arkeryd, was extended independently by Goudon [31] (for
s ≥ 7/3 in dimension 3) and by Villani [45] (for s > 2). In the last work,
the introduction of so-called H-solutions, with a formulation based on
the entropy dissipation, allowed us to treat Coulomb interaction (in
fact, angular singularities together with singularities in the relative
velocity like |v − v∗|γ, γ > −4 independently of the dimension), and
justify the Landau approximation.

3. The study of qualitative properties of solutions to the spatially
homogeneous Boltzmann equation without cut-off was first addressed
in the works of Desvillettes [17, 18, 19] and his student Proutière [42].
Graham and Méléard [32] managed to recover the results of Desvillettes
for the one-dimensional Kac model by a purely probabilistic method
relying on the Malliavin calculus. In all these works it is proven that
in some particular regimes, the Boltzmann equation without cut-off
has smoothing properties, which the Boltzmann equation with cut-off
does not enjoy. Further research on this topic is being performed by
Desvillettes and Wennberg, and by the second author as well.

4. The functional counterparts of these smoothing properties at the
level of the entropy dissipation (8) were studied by Lions [39], Vil-
lani [43], Alexandre [3, 4]. These papers show that the entropy dissi-
pation associated with a singular kernel controls the smoothness in the
velocity variable. They all consider different assumptions and obtain
different conclusions. Finally, optimal and extremely general results
were obtained in the recent study [6], which is a joint work with Desvil-
lettes and Wennberg, and actually a preliminary to the present paper.
It is a nice feature of the proofs therein that they invoke Bobylev’s idea
of using the Fourier transform for the study of the Boltzmann equation.

5. The mere structure of the collision operator was studied in Alexan-
dre [1, 2]. There it was shown how to view the Boltzmann collision
operator in a pseudo-differential formalism, at least if the cross-section
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is smooth in the relative velocity variable. One high point of this pro-
gram was the definition of the first renormalized formulation of the
Boltzmann equation without cut-off, based on the theory of pseudo-
differential operators [5, 4]. The present work extends considerably the
domain of application of the renormalization, and avoids any use of
pseudo-differential operators, allowing fully general cross-sections.

On the whole, the picture of grazing collisions now appears much
clearer than it ever was before. A general “moral” that one should
glean from all these works, as already stated in [6], is the following
formal statement. For a given nonnegative function g ∈ L1, the linear
operator

(23) f 7−→ Q(g, f) =

∫

RN

dv∗

∫

SN−1

dσ B(v − v∗, σ)(g′∗f
′ − g∗f),

with B(v − v∗, σ) = Φ(|v − v∗|)b(k · σ), sinN−2 θ b(cos θ) ∼ Kθ−1−ν,
behaves (from the smoothness point of view) like the fractional diffusion
operator −(−∆)ν/2.

In the special case of three-dimensional Maxwellian molecules (in-
verse 5-power forces), and in a linear context, this heuristic rule goes
back to Cercignani [13] thirty years ago. From the physical point of
view, it means that “real” interaction processes are neither purely col-
lisional nor purely diffusive, but somewhat in between.

By the way, in this paper as well as in our previous work [6], it will
be important to study properties not only of the quadratic Boltzmann
operator (2), but also of the bilinear Boltzmann operator Q(g, f) de-
fined by (23). Two particular cases will be of special interest : the
linear operator f 7→ Q(f, 1), and the adjoint of the linear operator
f 7→ Q(δv∗ , f).

We also wish to remark that apart from the angular singularity, many
open questions remain as long as one is interested in strong singularities
of the cross-section in the relative velocity variable (“kinetic” singular-
ities). Let us only mention that even in the spatially homogeneous
case, it is not known whether solutions of the Landau equation for
Coulomb potential (which is a universally accepted model for collisions
in a plasma) may develop singularities in finite time. And in this work,
even though we are able to cover basically all interesting non-cutoff po-
tentials, we paradoxically fail in the case of cross-sections which present
a nonintegrable kinetic singularity but no angular singularity. To our
knowledge, such cases do not occur in physically realistic models, but
are sometimes introduced by physicists as approximate models...
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The paper is organized as follows. In the next section, we detail
our assumptions on the cross-section B(v − v∗, σ), and then state our
main results. In section 3 we present our renormalized formulation, and
consider with particular attention the borderline case of a singularity
in |v − v∗|−N . In section 4, we recapitulate known a priori estimates,
show that strong compactness appears for positive times, and prove a
stability theorem which implies our main results. Finally, in section 5,
we discuss a new conjecture about the possible regularizing effects of a
borderline kinetic singularity.

Acknowledgement : The authors thank the support of the European
TMR “Asymptotic methods in kinetic theory”, contract ERB FMRX
CT97 0157. We are also indebted to Laurent Desvillettes for several
crucial ideas implemented in our joint work [6], whose precise results
have made the present study possible.

2. Assumptions on the cross-section and main results

Throughout the paper, we shall sometimes abuse notations by writ-
ing

B(v − v∗, σ) = B(|v − v∗|, cos θ),

where cos θ = ( v−v∗
|v−v∗| , σ), and 0 ≤ θ ≤ π/2. Recall that we got rid of

collisions with deflexion angle larger than π/2 by a simple symmetriza-
tion trick. It should be helpful to keep in mind the picture of collisions,
as recalled in fig. 2

It is sometimes mentioned in the physical literature that the most
meaningful quantity to associate with B is the so-called cross-section
for momentum transfer, that we shall define as

(24) M(|v − v∗|) ≡
∫

SN−1

B(v − v∗, σ)(1− k · σ) dσ

= |SN−2|
∫ π

2

0

B(|v − v∗|, cos θ)(1− cos θ) sinN−2 θ dθ.

Note first that since 1 − cos θ = 2 sin2(θ/2) vanishes up to order 2 for
θ close to 0, this quantity may be (and in fact, is typically) finite even
in the non cut-off case.

As we mentioned in the introduction,∫

SN−1

B(v − v∗, σ)(v − v′) dσ =
1

2
(v − v∗)M(|v − v∗|),

so that M really measures the mean quantity of momentum transferred
via collisions.
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Figure 1. The geometry of collisions

Remarkably, as first emphasized in Villani [45, 46], suitable condi-
tions on M are exactly what we need to give meaning to the Boltzmann
operator (as an operator acting on functions of the variable v), and to
develop a theory of weak solutions in the spatially homogeneous case.
On the other hand, if, for instance, B(v−v∗, σ) = |v−v∗|γ b(k ·σ) with∫

b(k · σ)(1 − k · σ) dσ = +∞, then the Boltzmann operator plainly
does not make distributional sense, see [46, Part I, Appendix A].

By analogy with the cut-off theory, it would be natural to require
that M define a locally integrable function. Here, in a spatially in-
homogeneous context, we shall need an extra condition which ensures
some very mild regularity of B in the relative velocity variable. Let us
define, for z 6= 0,

(25) B′(z, σ) = sup
1<λ≤√2

|B(λz, σ)−B(z, σ)|
(λ− 1)|z| ,

and, in the same way as (24),

(26) M ′(|v − v∗|) =

∫

SN−1

B′(v − v∗, σ)(1− k · σ) dσ.

The size of the nonnegative function M ′ measures in a very mild sense
the regularity of B in the relative velocity variable.

We shall show that a simple sufficient condition for a mathematical
treatment of the Boltzmann equation is that both M(|z|) and |z|M ′(|z|)
be locally integrable. That this condition is extremely weak can be seen
from the fact that it allows not only smooth (say, Lipschitz) functions,
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but also singular power laws |v − v∗|γ with γ > −N , since

|z| sup
1<λ≤√2

|λz|γ − |z|γ
(λ− 1)|z| = |z|γ sup

1<λ≤√2

λγ − 1

λ− 1
= Cγ|z|γ

is locally integrable if γ > −N .
The assumption that M , |z|M ′ be locally integrable is quite gen-

eral. Yet, by requiring it, we would overlook the most interesting case,
namely cross-sections presenting a borderline singularity like |v−v∗|−N .
In three dimensions, this is the exponent for Coulomb potential. We
shall be able to include this limit case thanks to a striking cancellation
property. Thus we can relax the assumptions on M and M ′ to take into
account only that part of B which is, loosely speaking, “not border-
line”. We emphasize that this extension is nontrivial even in the cut-off
case. The fact that borderline singularities may be allowed in a cut-off
context was first suggested by the formal study in Alexandre [1], based
on pseudo-differential operators. This leads us to our main assumption
on B.

Assumption I. (At most borderline singularity) Assume that

(27) B(z, σ) =
β0(k · σ)

|z|N + B1(z, σ), k =
z

|z| ,

for some nonnegative measurable functions β0 and B1, and define

(28) µ0 =

∫

SN−1

β0(k · σ)(1− k · σ) dσ,

(29) M1(|z|) =

∫

SN−1

B1(z, σ)(1− k · σ) dσ,

(30) M ′
1(|z|) =

∫

SN−1

B′
1(z, σ)(1− k · σ) dσ,

where

B′
1(z, σ) = sup

1<λ≤√2

|B1(λz, σ)−B1(z, σ)|
(λ− 1)|z| .

We require that

µ0 < +∞, and M1(|z|), |z|M ′
1(|z|) ∈ L1

loc(RN).

Remarks :

(1) Assumption I is in fact a simple condition to ensure a more
general criterion that will be given in section 3.
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(2) As a consequence,

M(|z|) = M1(|z|) +
µ0

|z|N ,

M ′(|z|) ≤ M ′
1(|z|) +

µ0

|z|N
(

2N/2 − 1√
2− 1

)
.

Note in particular that |z|M(|z|) is always integrable; this will
be used in the sequel.

Next, we have to take care of the behavior at infinity, in the case of
cross-sections that may grow to infinity.

Assumption II. (Behavior at infinity) For 0 ≤ α ≤ 2, let

(31) Mα(|z|) =

∫

SN−1

B(z, σ) (1− k · σ)
α
2 dσ, k =

z

|z| .

We require that for some α ∈ [0, 2], as |z| → ∞,

(32) Mα(|z|) = o(|z|2−α), |z|M ′(|z|) = o(|z|2).

Remarks :

(1) Obviously, controlling the behavior at infinity of Mα(|z|), |z|M ′(|z|)
is the same than controlling the behavior of Mα

1 (|z|), |z|M ′
1(|z|),

where Mα
1 is defined on the same pattern than (29).

(2) Note that M2 coincides with M , while M0 is the usual total
cross section (as appearing in the DiPerna-Lions theory). Thus,
the first part of condition (32) is an extension of the DiPerna-
Lions mild growth condition (13), which corresponds to the case
α = 0.

(3) We do not require that Mα(|z|) is a.e. finite : our assumption
is only for large |z|. Moreover, one can allow the slightly more
general condition

∀R > 0, lim
|z0|→∞

1

|z0|2−α

∫

|z−z0|≤R

Mα(|z|) dz = 0,

and a similar condition for M ′.

(4) In the model case

B(v − v∗, σ) = |v − v∗|γb(cos θ), with sinN−2 θ b(cos θ) ∼ Kθ−1−ν ,

ν > 0, K > 0, Assumption II allows γ + ν < 2. It is worth
noting that this assumption is always fulfilled in the physical
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cases of inverse s-power forces in dimension N = 3, since

γ + ν =
s− 3

s− 1
< 1.

So far, we have defined only conditions ensuring some control of
B(z, σ) in the relative velocity variable z, but we still have to define
conditions ensuring that it is actually singular in the angular variable.

Assumption III. (Angular singularity condition)

(33) B(z, σ) ≥ Φ0(|z|)b0(k · σ), k =
z

|z| ,

where Φ0 is a continuous function, Φ0(|z|) > 0 if |z| 6= 0, and

(34)

∫

SN−1

b0(k · σ) dσ = +∞.

We wish to emphasize the extreme generality of this assumption. To-
gether with Desvillettes and Wennberg, we have shown in [6] that such
a condition is sufficient to entail a “smoothness” estimate in the ve-
locity variable, which is the important point for us. The arguments
in [6] rely on the entropy dissipation : see section 4 for a discussion
and precise statements.

On the whole, in the model case

B(v − v∗, σ) = |v − v∗|γb(cos θ), sinN−2 θ b(cos θ) ∼ Kθ−1−ν

(ν > 0, K > 0), our Assumptions I, II and III together allow the
following range of parameters :

(35) γ ≥ −N, 0 ≤ ν < 2, γ + ν < 2.

Thus, in comparison with the DiPerna-Lions theory, the changes lie in
the parameter ν of course, but also in the possibility of letting γ = −N .

Our first main result is the following.

Theorem 2 (Stability and appearance of strong compactness). Make
assumptions I, II, III. Let (fn) be a sequence of solutions to the Boltz-
mann equation, in the sense of Definition 2, satisfying the natural a
priori estimates (16), (18). Without loss of generality, assume that
fn −→ f weakly in Lp([0, T ], L1(RN

x × RN
v )) (1 ≤ p < +∞). Then

(i) f is a solution to the Boltzmann equation, in the sense of Defi-
nition 2;

(ii) moreover, automatically, fn −→ f strongly.
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Compare this statement to Theorem 1. As a consequence of Theo-
rem 2 (in fact, to be more rigorous, of a simple variant), we obtain the
following existence result.

Corollary 2.1 (Existence of weak solutions). Make assumptions I, II,
III. Let f0 be an initial datum satisfying the natural assumption∫

RN
x ×RN

v

f0(x, v)
[
1 + |v|2 + |x|2 + log f0(x, v)

]
dx dv < +∞.

Then, there exists a solution f to the Boltzmann equation, in the sense
of Definition 2, with initial datum f(0, ·, ·) = f0. This solution satisfies,
for all t ≥ 0,

(36)

∫

RN×RN

f(t, x, v) dx dv =

∫

RN×RN

f0(x, v) dx dv,

(37)

∫

RN×RN

f(t, x, v)v dx dv =

∫

RN×RN

f0(x, v)v dx dv,

(38)

∫

RN×RN

f(t, x, v)
|v|2
2

dx dv ≤
∫

RN×RN

f0(x, v)
|v|2
2

dx dv,

and the entropy inequality

(39) H(f(T, ·, ·)) +

∫ T

0

dt

∫

RN

dxD(f(t, x, ·)) ≤ H(f0).

Remarks :

(1) Of course, in order for these statements to make sense, we still
have to make precise the definition of β′(f)Q(f, f), i.e. our
renormalized formulation. This will be done in the next section.

(2) Our renormalized formulation also makes sense for a cutoffed
interaction, and if we assume that the total cross-section

A(|z|) =

∫

SN−1

b(k · σ) dσ

satisfies A ∈ L1
loc(RN), A(|z|) = o(|z|2) at infinity, then the exis-

tence of renormalized solutions, with the formulation presented
in section 3 (but with zero defect measure) is a consequence of
the results of DiPerna and Lions.

(3) These results do cover the case in which there are both an an-
gular singularity and a borderline singularity in velocity, but
they do not cover the case in which only the latter is present.
See section 5 for a discussion.
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3. Renormalized formulation

In this section, we consider a fixed function β : R+ → R+ satisfying
the assumptions of Definition 2. In particular, β is 1-to-1, grows at
most logarithmically, and β−1 is convex. Typical choices are

β(f) =
1

δ
log(1 + δf), or β(f) =

f

1 + δf
, δ > 0.

In fact, for simplicity, we shall also assume in the sequel that β is
bounded, and leave the general case to the reader. The following pro-
cedure was inspired by Alexandre [5]. For all nonnegative numbers
f, f ′, let

(40) Γ(f, f ′) = β(f ′)− β(f)− β′(f)(f ′ − f).

Note that Γ(f, f ′) is nonpositve since β is concave. In fact,

Γ(f, f ′) = −β′(f)
[
β(f ′)−β(f)

]2
∫ 1

0

ds (1−s)(β−1)′′
(

β(f)+s[β(f ′)−β(f)]

)
.

Example : For β(f) = f/(1 + δf), one finds

Γ(f, f ′) = − δ(f ′ − f)2

(1 + δf)2(1 + δf ′)
.

Using identity (40), we obtain

β′(f)(f ′f ′∗ − ff∗) = β′(f)f ′∗(f
′ − f) + β′(f)f(f ′∗ − f∗)

= f ′∗[β(f ′)− β(f)]− f ′∗Γ(f, f ′) + β′(f)f(f ′∗ − f∗)

=f ′∗β(f ′)− f∗β(f)

+ [fβ′(f)− β(f)](f ′∗ − f∗)

− f ′∗Γ(f, f ′).

Now, let f = f(t, x, v) be a density distribution. Replacing f ′ by
f(t, x, v′), f ′∗ by f(t, x, v′∗) and so on, one can write, for almost all
(t, x, v),

(41) β′(f)Q(f, f) = (R1) + (R2) + (R3),

where

(42) (R1) =
[
fβ′(f)− β(f)

] ∫

RN×SN−1

dv∗ dσ B(f ′∗ − f∗),

(43) (R2) =

∫

RN×SN−1

dv∗ dσ B
[
f ′∗β(f ′)− f∗β(f)

]
,
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(44) (R3) = −
∫

RN×SN−1

dv∗ dσ Bf ′∗Γ(f, f ′).

(We have omitted the arguments of B for notational convenience.)

Notation : We define S as the linear operator

Sf ≡
∫

RN×SN−1

dv∗ dσ B(v − v∗, σ)(f ′∗ − f∗).

Thus,

(R1) =
[
fβ′(f)− β(f)

]Sf.

Remarks :

(1) In our forthcoming work [7], we shall see how well this renormal-
ized formulation is related to the renormalization of the Landau
equation, which was introduced by Lions [38] several years ago.

(2) The structure of the renormalized formulation is much clearer
when expressed in terms of the (asymmetric) bilinear Boltz-
mann operator,

Q(g, f) =

∫

RN×SN−1

dv∗ dσ B(v − v∗, σ)(g′∗f
′ − g∗f).

Indeed, note that

(R2) = Q(f, β(f)).

Moreover, the same manipulation as above shows that

β′(f)Q(g, f) = [fβ′(f)− β(f)]Sg + Q(g, β(f))

−
∫

RN×SN−1

dv∗ dσ B g′∗Γ(f, f ′).

This formula should actually be taken as the definition of the
renormalization of the bilinear Boltzmann operator without
cut-off.

In the next two subsections, we shall show successively that (R1) and
(R2) make sense in D′([0, T ]×RN

x ×RN
v ) for any distribution function

f satisfying the a priori bound

(45) sup
t∈[0,T ]

∫
f(t, x, v)(1 + |v|2) dx dv < +∞.
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Then, by integration of the equation in renormalized form, this will lead
to a bound on (R3), and we shall be able to complete our renormalized
formulation.

3.1. Symmetry-induced cancellation effects.

We consider the term (R1). Despite the nonintegrable singularity in
B, it would be easy to give a sense to

∫
dv∗ dσ B(f ′∗−f∗) if the function

f was smooth, and the singularity in B not too strong. Indeed, grazing
collisions occur for v′∗ ' v∗, hence f ′∗ − f∗ should vanish to order 1.
In fact, due to symmetries, there is a cancellation of order 2 in the
integral, even if f is not smooth. This is the content of the following
proposition.

Proposition 3 (Cancellation Lemma). Let B be a nonnegative mea-
surable kernel. Then, for a.a. v ∈ RN ,

(46) Sf ≡
∫

RN×SN−1

dv∗ dσ B(v − v∗, σ)(f ′∗ − f∗) = f ∗v S,

where
(47)

S(|z|) = |SN−2|
∫ π

2

0

dθ sinN−2 θ

[
1

cosN(θ/2)
B

( |z|
cos(θ/2)

, cos θ

)
−B(|z|, cos θ)

]
.

In particular, if B satisfies Assumption I, then

(48) S(|z|) = λδ0 + S1(|z|),
where δ0 is the Dirac mass at the origin,

λ = −|SN−2||SN−1|
∫ π

2

0

β0(cos θ) log cos(θ/2) sinN−2 θ dθ,

and S1 is a locally integrable function,

|S1(|z|)| ≤ 2
N−4

2

cos2(π/8)

[
NM1(|z|) + |z|M ′

1(|z|)
]
.

Remarks :

(1) Of course, Sf = Q(f, 1).

(2) If B is homogeneous of degree −N in the relative velocity vari-
able, then at first sight the kernel S is identically 0. But this
hides the fact that B is not integrable, and that S has to be
defined as a principal value operator,

Sf = lim
ε→0

∫
dv∗ dσ B(v − v∗, σ)1|v−v∗|≥ε 1θ≥ε (f ′∗ − f∗).
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Thus the convolution kernel S will in general be a Radon mea-
sure. In fact, in such situations, the result of Proposition 3
should be considered as the definition of the left-hand side. At
the level of the Boltzmann equation, this definition is justified
by the fact that all expressions given above coincide as long as
f is smooth (in which case Q(f, f) is easily given a sense via
Taylor expansions of f ′f ′∗ − ff∗ for v′ ' v, v′∗ ' v∗).

(3) Using the inequality − log u ≤ (1/u)− 1, we find

0 ≤ λ ≤ |SN−1|
4 cos2(π/8)

µ0.

(4) In the case where the kinetic cross-section is a power law, B(z, σ) =
|z|γb(cos θ), γ ≥ −N , then the integrand in (47) is always non-
negative.

(5) In fact, instead of Assumption I, we could impose that S defined
by (47) is a locally bounded measure. This kind of assumption
will be useful to discuss the Landau approximation.

(6) Similar lemmas appear in previous works by both authors, and
also implicitly in former work by Desvillettes [19]. This result
is stated here for the first time at such a level of generality.
The proof that we present follows quite closely the argument in
Villani [43], and part of it was reproduced in the joint work [6],
in order to make it self-contained.

Before proving Proposition 3, we state the following corollary.

Corollary 3.1. Let B satisfy assumptions I and II, and let f sat-
isfy (45). Then, (R1) defined by (42) lies in L∞([0, T ]; L1(RN

x ×BR(v))),
for all R > 0, where BR(v) = {v ∈ RN , |v| ≤ R}.
Proof of Corollary 3.1. Since fβ′(f) ∈ L∞ by assumption, we only
need to show that f ∗ S ∈ L1(RN

x ×BR(v)). But

‖f ∗ S‖L1(RN
x ×BR(v)) ≤

∫

|v|≤R

f(x, v∗)|S(v − v∗)| dv dv∗ dx

≤
∫

RN

dx

∫

RN

dv∗ f(x, v∗)
∫

|z+v∗|≤R

dz |S(z)|

≤ ‖f‖L1(RN
x ×RN

v )‖S‖TV (|z|≤R+R′)

+
1

(R′)2

[∫
dx dv∗f(x, v∗)|v∗|2

]
sup
|v∗|≥R′

∫

|z+v∗|≤R

dz |S(z)|,
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σ

v * =ψσ ( * )v’

∆

θ ’
v

v’*

θ

Figure 2. ∆ is the mediatrix of (v, v′∗); cos θ = k · σ;
cos θ′ = k′ · σ = cos(θ/2).

for all R′ > 0. Here ‖ · ‖TV denotes the norm in total variation. From
the Cancellation Lemma and Assumption II, we have |S(z)| = o(|z|2)
as |z| → ∞, and the above expression is finite for R′ large enough. ¤

Proof of Proposition 3. Since S is defined as a principal value operator,
we shall do the computation assuming B to be integrable. The con-
clusion will then follow by any limit procedure. Following Villani [43],
we perform the change of variables v∗ → v′∗, for each v, σ fixed. This
change of variables is well-defined on (cos θ > 0), with Jacobian given
by

∣∣∣∣
dv′∗
dv∗

∣∣∣∣ =
1

2N
(1 + k · σ) =

(k′ · σ)2

2N−1
,

where

k′ =
v − v′∗
|v − v′∗|

, k′ · σ = cos
θ

2
>

1√
2
.

Accordingly, we introduce the application ψσ : v′∗ 7−→ v∗, defined on
(k′ · σ) > 1/

√
2. We reproduce here fig. 1 of [43] to describe ψσ geo-

metrically. We note that |v∗ − ψσ(v′)| = |v′ − v∗|/(k′ · σ), or, what is
the same,

|v∗ − ψσ(v)| = |v − v∗|
k · σ .
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We apply this change of variable to the part
∫

Bf ′∗ in the left-hand side
of (46) :
∫

SN−1×RN

dσ dv∗ B(v−v∗, σ) f ′∗ =

∫

k′·σ≥1/
√

2

dσ dv′∗

∣∣∣∣
dv∗
dv′∗

∣∣∣∣B
(
v−ψσ(v′∗), σ

)
f ′∗

=

∫

k′·σ≥1/
√

2

dσ dv′∗
2N−1

(k′ · σ)2
B

(
v − ψσ(v′∗), σ

)
f ′∗.

With our notational convention for the cross-section,

B
(
v−ψσ(v′∗), σ

)
= B

(|v−ψσ(v′∗)|, k·σ
)

= B
(
|v−ψσ(v′∗)|, 2(k′ ·σ)2−1

)
.

Changing the name v′∗ for v∗, we find that (46) holds with

S(|v − v∗|) =

∫

k·σ≥ 1√
2

dσ
2N−1

(k · σ)2
B

(
|v∗ − ψσ(v)|, 2(k · σ)2 − 1

)

−
∫

k·σ≥0

dσB(|v − v∗|, k · σ).

The first part is then∫

k·σ≥ 1√
2

dσ
2N−1

(k · σ)2
B

( |v − v∗|
k · σ , 2(k · σ)2 − 1

)

= |SN−2|
∫ π

4

0

dθ sinN−2 θ
2N−1

cos2 θ
B

( |v − v∗|
cos θ

, cos(2θ)

)

= |SN−2|
∫ π

4

0

d(2θ)
sinN−2(2θ)

cosN θ
B

( |v − v∗|
cos θ

, cos(2θ)

)

= |SN−2|
∫ π

2

0

dθ
sinN−2 θ

cosN(θ/2)
B

( |v − v∗|
cos(θ/2)

, cos θ

)
.

This proves our first claim. Note the double change of variables (v′∗ →
v∗, θ → 2θ), which is important to recover the right homogeneity.

With the notations of (29) of Assumption I, let us now estimate S.
We first consider the contribution S1 of B1, i.e. that part of B which
is not borderline in (27). Clearly,

|S1(|v−v∗|)| ≤ |SN−2|
∫ π

2

0

dθ sinN−2 θ
1

cosN(θ/2)

∣∣∣∣B1

( |v − v∗|
cos(θ/2)

, cos θ

)

−B1(|v − v∗|, cos θ)

∣∣∣∣

+|SN−2|
∫ π

2

0

dθ sinN−2 θ

[
1

cosN(θ/2)
− 1

]
B1(|v − v∗|, cos θ).
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≤ |SN−2| 2N/2

∫ π
2

0

dθ sinN−2 θ
(
1− cos(θ/2)

)|v− v∗|B′
1(|v− v∗|, cos θ)

+ |SN−2| 2N/2

∫ π
2

0

dθ sinN−2 θ
(
1− cosN(θ/2)

)
B1(|v − v∗|, cos θ).

Since 1 − cosN(θ/2) ≤ N
(
1 − cos(θ/2)

)
= 2N sin2(θ/4) ≤ N(1 −

cos θ)/(4 cos2(π/8)), there is a cancellation of order 2, and we conclude
by recalling the definitions of M1, M ′

1.
Now, let us estimate only the borderline contribution, i.e. assume

that B(z, σ) = β0(k · σ)|z|−N . Let Bε(z, σ) = β0(k · σ)|z|−N1|z|≥ε. To
this cross-section is associated the convolution kernel

Sε(|z|) =
|SN−2|
|z|N

∫ π
2

0

dθ sinN−2 θ
[
1|z|≥ε cos(θ/2) − 1|z|≥ε

]
β0(cos θ)

=
|SN−2|
|z|N

∫ π
2

0

dθ sinN−2 θ β0(cos θ)1ε cos(θ/2)≤|z|≤ε.

Let

I(δ) =

∫ π
2

δ

dθ sinN−2 θβ0(cos θ),

we have

Sε(|z|) =
|SN−2|
|z|N I

(
2 cos−1

( |z|
ε

))
1|z|≤ε

=
1

εN
J

( |z|
ε

)
,

where J(z) = |SN−2|I(2 cos−1(|z|))|z|−N 1|z|≤1. The fact that the inte-
gral of Sε is constant, and that Sε is supported in a ball of radius ε
easily imply our claim, with λ =

∫
RN J(z) dz, i.e.

λ = |SN−2||SN−1|
∫ 1

0

dr

r

∫ π
2

2 cos−1 r

β0(cos θ) sinN−2 θ dθ

= |SN−2||SN−1|
∫ π

2

0

dθ sinN−2 θ β0(cos θ)

∫ 1

cos(θ/2)

dr

r

= −|SN−2||SN−1|
∫ π

2

0

β0(cos θ) log cos(θ/2) sinN−2 θ dθ.

¤

Remark : The change of variables v∗ → v′∗ introduces a singularity
for frontal collisions, i.e. those collisions in which v′ ' v∗, v′∗ ' v.
We avoid this difficulty by assuming from the beginning, without loss
of generality, that B is supported in (k · σ ≥ 0). We could as well
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assume that B is supported in (k · σ ≥ −(1− δ)), for some δ > 0, and
we would find straightforward modifications of the above results, only
with different constants (depending on δ).

3.2. Dual formulation of the bilinear Boltzmann operator.

Now, we tackle (R2). This term, which is nothing but the action
of the bilinear Boltzmann operator on f and β(f), essentially involves
fractional derivatives of these functions. We shall define it in the sense
of distributions, by duality. Let ϕ(v) be a (smooth) test-function in
the velocity variable, then
∫

(R2)ϕ(v) dv =

∫

R2N×SN−1

dv dv∗ dσ B
[
f ′∗β(f ′)− f∗β(f)

]
ϕ

=

∫

R2N

dv dv∗ f∗β(f)

[∫

SN−1

B(v − v∗, σ)(ϕ′ − ϕ) dσ,

]

where we have used the standard change of variables (σ, v, v∗) ↔ (σ, v′, v′∗),
with unit Jacobian. For given v∗, the linear operator

(49) T : ϕ 7−→
∫

SN−1

B(v − v∗, σ)(ϕ′ − ϕ) dσ

plays a key part in the theory of the Boltzmann equation, to which it is
naturally associated, as being the adjoint operator to f 7→ Q(δv∗ , f). In
the cutoff case, this operator was studied by Lions [35] and Wennberg [47,
48] : it is a compact perturbation of a multiplicative operator. On the
other hand, in the non-cutoff case, we are aware of no conclusive study.
In [6] it was shown that from the regularity point of view, averages
of the form

∫
dv∗ g∗T “differentiate at least as much” as a fractional

Laplace operator as soon as g has a nonsingular part. We shall show
here that T is essentially bounded as an operator from W 2,∞ to L∞,
independently of the strength of the singularity.

Proposition 4 (W 2,∞ → L∞ bound for T ). Let B satisfy Assump-
tion I. Then, for all ϕ ∈ W 2,∞(RN

v ),

|T ϕ(v)| ≤ 1

2
‖ϕ‖W 2,∞|v − v∗|

(
1 +

|v − v∗|
2

)
M(|v − v∗|).

Moreover, for all α ∈ [0, 2] and ϕ ∈ W 2,∞(RN
v ),

|T ϕ(v)| ≤ 2‖ϕ‖W 2,∞(1 + |v − v∗|)α Mα(|v − v∗|),
where Mα is defined by formula (31).



26 R. ALEXANDRE AND C. VILLANI

Proposition 4 shows in particular that the cancellation properties
exploited in [31, 45] do not require as many symmetries as used there,
and hold for the nonsymmetric Boltzmann operator as well as for the
symmetric one. In these works, the study of the operator T is a key step
towards the justification of the Landau approximation in the spatially
homogeneous case. Before displaying the proof of Proposition 4, we
give an immediate corollary :

Corollary 4.1. Let B satisfy Assumptions I and II, and let f sat-
isfy (45). Then, for all R > 0, the term (R2) defined by (43) lies
in L∞([0, T ]; L1(RN

x ; W−2,1(BR(v)))), where BR(v) still denotes {v ∈
RN , |v| ≤ R}.
Proof of Corollary 4.1. For a.a. t, x,

‖(R2)‖W−2,1
v (BR(v)) = sup

{∫

RN

(R2)ϕdv; ϕ ∈ W 2,∞(BR(v)), ‖ϕ‖W 2,∞ ≤ 1

}

≤
∫

RN
x ×BR(v)

dv dv∗ β(f)f∗|T ϕ|

≤
∫

RN
x ×BR(v)

dv dv∗ β(f)f∗
(|v − v∗|M(|v − v∗|)1|v−v∗|≤R

+ 2|v − v∗|αMα(|v − v∗|)1|v−v∗|≥R

)

≤ C(1+R)‖f‖L1
v
‖ |z|M(|z|)‖L1(|z|≤R)+ε(R)

(∫

RN
v∗×BR(v)

dv∗ f∗|v − v∗|2 dv dv∗

)

where we used assumption II. It then suffices to integrate with respect
to x. ¤

Proof of Proposition 4. By Taylor formula,

(50) ϕ(v′)− ϕ(v) = (v′ − v) · ∇ϕ(v)

+ |v′ − v|2
[∫ 1

0

ds (1− s)D2ϕ
(
v + s(v′ − v)

) ·
(

v′ − v

|v′ − v| ,
v′ − v

|v′ − v|
)]

.

By symmetry,
∫

SN−1

dσ B(v − v∗, σ)(v′ − v) =

∫

SN−1

dσ B(v − v∗, σ)(v′ − v, k)k,
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where k = (v − v∗)/|v − v∗|. But (v′ − v, k)k = −(1/2)|v − v∗|(1 −
cos θ)k = −(v − v∗) sin2(θ/2). Since also |v′ − v|2 = |v − v∗|2 sin2(θ/2),
we find precisely

(51) T ϕ = −1

2
M(|v − v∗|)(v − v∗) · ∇ϕ(v)

+
1

2
|v − v∗|2

∫

SN−1

dσ B(v − v∗, σ)(1− k · σ)

[∫ 1

0

ds (1− s)D2ϕ
(
v + s(v′ − v)

) ·
(

v′ − v

|v′ − v| ,
v′ − v

|v′ − v|
)]

.

In particular,

(52) |T ϕ| ≤ ‖ϕ‖W 2,∞

[
1

2
M(|v − v∗|)|v − v∗|+ 1

4
|v − v∗|2M(|v − v∗|)

]

=
1

2

(
1 +

|v − v∗|2
2

)
|v − v∗|M(|v − v∗|)‖ϕ‖W 2,∞

≤ 1

2
(1 + |v − v∗|2)M(|v − v∗|)‖ϕ‖W 2,∞ .

Note that, by the same estimate,

|T ϕ| ≤
(

1

2
+

R

4

)
‖ϕ‖W 2,∞|v − v∗|M(|v − v∗|) if |v − v∗| ≤ R.

But from the definition of T it also follows that

(53) |T ϕ| ≤ 2M0(|v − v∗|)‖ϕ‖L∞ ,

and since M = M2, by combining (52) and (53), we obtain the a priori
bound

|T ϕ| ≤ 2(1 + |v − v∗|2)α/2Mα(|v − v∗|)‖ϕ‖W 2,∞ .

¤
3.3. Integrability of the Γ term.

Finally, we derive an easy a priori estimate for the last term (R3),
which involves Γ(f, f ′).
Proposition 5. Let B satisfy assumptions I and II, and let f be a so-
lution of the Boltzmann equation, satisfying (45). Then, for all R > 0,

(54) (R3) ∈ L1([0, T ]; L1(RN
x ×BR(v))),

where (R3) is defined in (44).

Remark : Of course, this Proposition has to be understood in the
sense of an a priori estimate, since our goal is precisely to show that
the notion introduced in Definition 2, with the help of the renormalized
collision operator β′(f)Q(f, f), is meaningful.
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With Corollaries 3.1, 4.1 and Proposition 5 in hand, we will have –
at last ! – shown that our renormalized formulation makes sense.

Proof of Proposition 5. The argument is similar to the one in Lions [38],
and relies on the nonnegativity of the integrand in (R3). Let us inte-
grate equation (21), in the form

∂β(f)

∂t
+ v · ∇β(f) ≥ (R1) + (R2) + (R3),

in all variables, against a test-function ϕ(v) ≥ 0, ϕ ≡ 1 on BR(v),
ϕ ≡ 0 on RN \ B2R(v), ‖ϕ‖W 2,∞ ≤ CR−2. Thanks to our assumptions
on β, we have β(f) ≤ Cf , so that

∫

RN
x ×B2R(v)

β(f(T, x, v)) dx dv ≤ C‖f0‖L1(RN
x ×RN

v ).

Also
∫

v · ∇xβ(f)ϕ(v) dv dx = 0 (this computation is easily justified
by approximation, using the bounds (45) which ensure decay of f at
infinity). Also the integrals of (R1) and (R2) are bounded according to
Corollaries 3.1 and 4.1. Since (R3) is nonnegative, we are left with (54).

¤

4. Strong compactness and passage to the limit

In this section, we prove Theorem 2. We shall not completely detail
the argument below, because some parts of it are quite similar to exist-
ing proofs in [23, 34, 35, 38, 39]. So we only insist on the new features
of the proof.

We proceed by approximation. There are several ways of doing this,
and one possible would be to choose approximate equations in the same
spirit as DiPerna and Lions, for instance

(55)
∂fn

∂t
+ v · ∇xf

n =
Q̃n(fn, fn)

1 + 1
n
‖fn‖L1

v

,

where ‖f‖L1
v
(t, x) =

∫
f(t, x, v) dv, and Q̃n is a Boltzmann operator

with a suitable mollification Bn of the cross-section B. Also the initial
datum f0 should be approximated by a smooth function fn

0 with rapid

decay, and with a bound below of the form Cne
−δn(|v|2+|x|2), so that

formal manipulations involving the logarithm are all admissible... Yet
it will be simpler, and more satisfactory, to start from the known re-
sults of DiPerna and Lions, of existence in the cutoff case, and thus to
deal only with solutions of true Boltzmann equations, where the only
approximation will be performed at the level of the cross-section.



BOLTZMANN EQUATION FOR LONG-RANGE INTERACTIONS 29

Definition 3. Let (Bn)n∈N∪{B} be a sequence of cross-sections satis-
fying Assumptions I and II. We denote quantities attached to each Bn

as in (24),(47), by Mn, Sn, etc. We shall say that Bn approximates B
(and write Bn −→ B ) if

(i) Sn −→ S, locally in weak-measure sense;

(ii) Tn −→ T , in weak (distributional) sense;

(iii) Bn −→ B a.e. on RN × SN−1;

(iv) As |z| → ∞, Mα
n = o(|z|2−α) for some α ∈ [0, 2], and |z|M ′

n(|z|) =
o(|z|2), uniformly in n.

Remark : If |z|Mn(|z|) → |z|M(|z|) (locally in weak-measure sense)
and

|z|2−εBn(z, σ)(1− k · σ)1−δ −→ |z|2−εB(z, σ)(1− k · σ)1−δ

for some ε, δ > 0, then Tn −→ T weakly, according to formula (51)
(note that for any ε, δ > 0, the function |v−v∗|ε(1−k ·σ)δ(v′−v)/|v′−v|
is a continuous function of both σ and v − v∗).

Example : If B satisfies assumption I, the most simple way to ap-
proximate B is of course to choose Bn(z, σ) = B(z, σ)1|z|≥1/n, θ≥1/n.

We also need a condition to express the fact that “on the whole”,
the sequence (Bn) is singular enough :

Assumption III’ (Overall angular singularity condition). We require
that for all n,

(56) Bn(z, σ) ≥ Φ0(|z|)b0,n(k · σ), k =
z

|z| ,

for some fixed continuous function Φ0(|z|) such that Φ0(|z|) > 0 if
z 6= 0, and

(57)

∫

SN−1

lim
n→∞

b0,n(k · σ) dσ = +∞.

Remark : Of course, if B satisfies Assumption III, then without loss
of generality we may choose the same function Φ0 in Assumptions III
and III’.

Taking into account the results of DiPerna and Lions, Theorem 2
will be a byproduct of the following extended stability theorem.

Theorem 6 (Extended stability). Let B satisfy Assumptions I, II, III,
and let (Bn)n∈N be a sequence of cross-sections such that Bn −→ B.
Assume that this sequence satisfies the overall singularity condition III’.
Let (fn)n∈N be a sequence of solutions to the Boltzmann equation with



30 R. ALEXANDRE AND C. VILLANI

respective cross-section Bn, in the sense of Definition 2. Assume that
the sequence (fn) satisfies the natural a priori bounds (16), (18) (with
B replaced by Bn, of course). Assume without loss of generality that

fn −→ f weakly in Lp([0, T ], L1(RN
x × RN

v )) (1 ≤ p < +∞).

Then

(i) fn converges strongly towards f ;

(ii) f is a renormalized solution with a defect measure of the Boltz-
mann equation with cross-section B;

(iii) f satisfies (36)–(39).

Remark : The control on
∫

fn log fn and
∫

fn(1 + |v|2 + |x|2) dx dv
also implies classicaly control on

∫
fn| log fn|, and by Dunford-Pettis

Theorem, this implies that the sequence (fn) is uniformly equicontin-
uous, and lies in a weakly compact set of L1. This is why, extracting
subsequences if necessary, we may assume that

fn −→ f in w − Lp([0, T ], L1(RN
v × RN

x )), 1 ≤ p < ∞.

Proof of Theorem 6. We first prove that the convergence is strong. We
shall follow the general strategy exposed in Lions [38]. Once this is
done, it will remain to pass to the limit in the equation as n →∞.

1) The first step is to write the renormalized formulation, that is,

∂β(fn)

∂t
+ v · ∇xβ(fn) = β′(fn)Q(fn, fn) + µn,

where, for all R > 0, µn is a nonnegative measure, with finite mass on
[0, T ]× RN

x ×BR(v). According to all the bounds proven in section 3,

∂β(fn)

∂t
+ v · ∇xβ(fn) = gn +

∑
i

∂

∂vi

gn
i +

∑
ij

∂2

∂vi∂vj

gn
ij,

where gn, gn
i , gn

ij are locally integrable, or locally bounded measures.
This entails, by the so-called averaging lemmas [29, 26, 34], that aver-
ages of the form

∫
β(fn)ϕ(v) dv, for ϕ ∈ C∞

0 (RN), are strongly com-
pact in the variables (t, x). Reasoning as in [23, 38], and using a priori
bounds on fn, one deduces from this that convolution products of the
form β(fn) ∗v ϕ are also strongly compact in L1([0, T ]× RN

x × RN
v ).

Reasoning as in [23, 38] (replacing β(fn) by a concave approximation
of the square root function and using the a priori bounds (16) together
with standard arguments from functional analysis), this also implies
that convolution products of the form

√
fn ∗v ϕ are strongly compact

in L1. This result is a somewhat general consequence of the existence
of a renormalized formulation.
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Another useful information, obtained by combining the averaging
lemmas, the renormalized formulation and the bounds on (fn), is that∫

fn dv is strongly compact in (t, x), and thus converges strongly to∫
f dv.

2) The next and most delicate step is to use a smoothness estimate in
the velocity variable. It will be a consequence of the entropy dissipation
estimate and the overall singularity assumption III’. At this point we
invoke the results that we have established together with Desvillettes
and Wennberg in [6]. Let

Zn(a) = |SN−2|
∫ π

2

a

b0,n(cos θ) sinN−2 θ dθ,

and let fn
R = fnχR, where χ(v) is a smooth cutoff function with support

in B3R(v), identically equal to 1 on B2R(v).
In [6] we have proven the following result : for all 0 < L < +∞,

0 < ε < +∞, for a.a. (t, x) such that

Hn(t, x) ≡
∫

fn(t, x, v)
(
1 + |v|2 + log fn(t, x, v)

)
dv ≤ L < +∞,

and

ρn(t, x) ≡
∫

fn(t, x, v) dv ≥ ε > 0,

the following pointwise estimate in (t, x) holds :

(58)

∫

|ξ|≥1

|F
√

fn
R|2Zn

(
1

|ξ|
)

dξ ≤ C(fn, R, Φ0)

[
D(fn) + ‖fn‖2

L1
2

]
.

Here F denotes the usual Fourier transform with respect to the velocity
variable, and C(fn, R, Φ0) is a constant depending only on R, Φ0, and
on L, ε.

Thus (loosely speaking), taking into account the bounds

sup
n

sup
t

∫

RN

dxD(fn) < +∞, sup
n

sup
t

∫

RN

dxHn(t, x) < +∞,

we see that the entropy dissipation estimate implies a smoothness es-
timate for

√
fn in the velocity variable, out of

(i) a set of small measure in (t, x) where fn may have infinite mass,
energy or entropy, and

(ii) a set where the density ρn =
∫

fn dv may be very small.

A precise formulation is easy, in the same spirit as in Lions [38, 39].
Let us fix a large number R. By the a priori bounds on f , it is clear that
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gn =
√

fn ⇀ g for some function g ∈ L2. To prove strong convergence,
it is enough to prove that gn → g a.e. on each Wε ×BR(v), where

Wε =

{
(t, x); t ∈ [0, T ], |x| < R,

∫
g2 dv > ε

}
.

Indeed, note that gn → g = 0 in L1(|x| < R, |v| < R,
∫

g2 dv = 0)
(a sequence of nonnegative functions, converging to 0 weakly in L1,
automatically converges to 0 strongly in L1).

Now, on Wε, by convexity of the square function,

ε <

∫
g2 dv ≤ lim

n→∞

∫
(gn)2 dv = lim

n→∞

∫
fn dv =

∫
f dv

where we have used the fact that
∫

fn dv −→ ∫
f dv strongly. By

Egorov’s theorem, for all δ > 0 there is a Borel set Uδ, with measure
less than δ, such that

∫
fn dv −→ ∫

f dv uniformly on Wε \ Uδ. For n
large enough, this implies that

∫
fn dv ≥ ε/2 on Wε \ Uδ.

Next, let

V n
L = {(t, x); Hn(t, x) > L}.

Our bounds imply that |V n
L | ≤ CL−1, where C is a constant indepen-

dent on n. And our entropy dissipation estimate implies that there is
another constant C such that for all A ≥ 1,

∫

W ε\(Uδ∪V n
L )

dt dx

∫

|ξ|≥A

dξ |F
√

fn
R|2 ≤

C

Zn

(
1
A

) .

Passing to the lim sup on both sides, we find

lim
n→∞

∫

W ε\(Uδ∪V n
L )

dt dx

∫

|ξ|≥A

dξ |F
√

fn
R|2 ≤

C

Z∞
(

1
A

) ,

where

Z∞(a) = lim
n→∞

|SN−2|
∫ π

2

a

b0,n(cos θ) sinN−2 θ dθ

≥ |SN−2|
∫ π

2

a

lim
n→∞

b0,n(cos θ) sinN−2 θ dθ.

From formula (57) we know that

Z∞(a)
a→0−−→ +∞.

Thus, for each L, ε, δ, we have

lim
A→∞

lim
n→∞

∫

W ε\(Uδ∪V n
L )

dt dx

∫

|ξ|≥A

dξ |F
√

fn
R|2 = 0.
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On the other hand, since |Uδ∪V n
L | ≤ δ+L−1, and since (fn) is uniformly

equi-integrable,

lim
δ→0

L→+∞
sup
n∈N

∫

Uδ∪V n
L

dt dx

∫

RN

dξ |F
√

fn
R|2 = 0.

On the whole,

(59) lim
A→+∞

lim
n→∞

∫

W ε

dt dx

∫

|ξ|≥A

dξ |F
√

fn
R|2 = 0.

This is the “velocity smoothness” estimate that we needed.

3) Now, let ρδ = δ−Nρ(·/δ), δ > 0, be a family of mollifiers in
the velocity variable (ρ smooth, nonnegative, compactly supported,∫

ρ = 1). From (59) follows

lim
δ→0

lim
n→∞

‖
√

fn
R −

√
fn

R ∗ ρδ‖L2(Wε×BR(v)) = 0.

Clearly, in view of our truncation procedure this is the same as

lim
δ→0

lim
n→∞

‖
√

fn −
√

fn ∗ ρδ‖L2(Wε×BR(v)) = 0.

Since, for any δ > 0,
√

fn ∗ ρδ lies in a strongly compact set in L2, this
entails that (

√
fn) is also relatively strongly compact.

4) We can now prove strong compactness as in Lions [38]. From
the strong compactness of (

√
fn) follows the a.e. convergence of (fn).

Since (fn) already converges weakly towards f , this entails that

fn −→ f in L1([0, T ]×RN
x ×RN

v ).

5) Once the strong convergence has been established, it is easy to
pass to the limit in the renormalized formulation with a defect measure.
First, it is clear that

∂β(fn)

∂t
−→ ∂β(f)

∂t
, v · ∇xβ(fn) −→ v · ∇xβ(f)

in weak sense.
Then, we handle the term (R1). With the notations of Proposition 3,

for any test-function ϕ (smooth with compact support),∫
(R1)

nϕ =

∫

R2N

[fnβ′(fn)− β(fn)]fn
∗ Sn(v − v∗)ϕ(v) dv dv∗.

Since (fnβ′(fn)−β(fn)) is relatively compact in weak-* L∞, it suffices
to show that (fn∗Sn) is relatively strongly compact in L1. This follows
immediately from the bounds on Sn and fn at infinity, the fact that Sn
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converges locally in weak-measure sense, and the strong convergence of
fn.

Next, we consider (R2). For a sufficiently smooth test-function ϕ,
we have ∫

(R2)
nϕdv =

∫

R2N

fn
∗ β(fn)(T nϕ) dv dv∗,

where T n is the linear operator defined in (49). Thus, it is immediate
that ∫

(R2)
nϕdv dx −→

∫
(R2)ϕdv dx,

since T n → T in weak sense, as an operator on L1(RN
v × RN

v∗), and
fn
∗ β(fn) → f∗β(f) in strong L1 sense, locally on RN

x × RN
v∗ × RN

v .
Finally, (R3)

n is bounded in measure sense, locally in velocity space,
so that up to extraction, it converges weakly to some nonnegative limit.
Let ϕ(t, x, v) be a nonnegative test-function; since fn −→ f and Bn −→
B a.e., it follows at once from Fatou’s lemma that∫

(R3)ϕ ≤ lim
n→∞

∫
(R3)

nϕ,

which proves that, in weak sense, (R3) ≤ lim(R3)
n.

6) As for the mass and momentum conservation laws (36) and (37),
they are easy consequences of the convergence of fn towards f and the
uniform energy bounds, while the identities (38) and (39) are implied
by Fatou’s lemma again.

¤

Remark : Under suitable assumptions on the cross-section, this proof
of strong compactness may possibly be turned into explicit smoothness
bounds by the strategy of Desvillettes and Golse [21].

5. Is a borderline kinetic singularity regularizing ?

Our renormalized formulation covers such cross-sections as

(60) sin θ Bn(|z|, cos θ) =
1

log n

1

|z|3
cos(θ/2)

sin3(θ/2)
1θ≥ 1

n

in dimension N = 3, which is sometimes used as an approximation of
the cross-section associated to the screened Debye potential (see [15]
for instance). But we are unable to prove stability/existence results for
such a cross-section because (for a given n) it is nonsingular in θ, so
that the singularity condition III does not hold.

We insist that this is an artifact of the approximation. Like any cross-
section associated to a long-range potential, the Debye cross-section is
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singular in the angular variable θ, as we shall check in [7]. Ironically,
this approximation, which is performed to get rid of the difficulties
caused by too strong an angular singularity, yields too weak an angular
singularity for our theorem to apply !

On the other hand, the kernel is nonintegrable in the relative ve-
locity variable, and we may conjecture that this is sufficient to entail
strong compactness. Our conjecture relies on the following observation.
Assume that

B(z, σ) ≥ Φ0(|z|)b0(k · σ), k = z/|z|,
where Φ0(|z|) ≥ K|z|−N and b0 is not identically zero. Assume without
loss of generality that b0 is identically vanishing close to θ = 0, and
replace it by its symmetric version. Since we have cut frontal colli-
sions, we are then allowed to use the Cancellation Lemma, even for a
borderline singularity.

Starting from the entropy dissipation estimate and applying the same
method as in [7], we can prove

∫
dt dx dv dv∗ dσ b0(k · σ)f∗

(β(f)− β(f ′))2

|v − v′|N < +∞.

This inequality can be transformed by using the symmetries

(v, v∗) ↔ (v∗, v), (v′, v′∗, k) → (v, v∗, σ), σ → −σ

(which may more easily be thought of as k → −k, σ ↔ k, σ → −σ).
Combining the resulting estimates with the elementary inequalities

[
β(f)− β(f∗)

]2 ≤ 2
[
β(f)− β(f ′)

]2
+ 2

[
β(f ′)− β(f∗)

]2

and |v − v′| ≤ |v − v∗|, one can prove that
(61)∫

dt dx dv dv∗

[∫

SN−1

dσ b0(k · σ)[f(v′) + f(v′∗)]
]

(β(f)− β(f∗))2

|v − v∗|N < +∞.

If the coefficient in square brackets was locally bounded below, this
would entail a control on β(f) locally in

log H =

{
F ∈ L2(RN);

∫

RN

|F̂ (ξ)|2 log(1 + |ξ|) dξ < +∞
}

.

Since the coefficient
∫

SN−1 dσ b0(k ·σ)f(v′) is an integral over a man-
ifold of codimension 1, and therefore may take arbitrarily small values
unless f is locally bounded below, we unfortunately cannot conclude
the argument and prove strong compactness. In fact, it seems ex-
tremely intricate to exclude the possibility that f may take very large
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and very small values at very close points. This difficulty, which is of
genuinely nonlinear nature, is the same that appeared in Villani [43].

One striking aspect is that the estimate (61) above is, in some sense,
geometrically dual to the estimate extracted from [43] in the case of a
logarithmic angular singularity (i.e. when sinN−2 b0(cos θ) ≥ Kθ−1 ).
This last estimate reads

∫
dt dx dv dv′

(∫

Evv′
dv∗ Φ0(|v′ − v′∗|)|v′ − v′∗|[f(v∗) + f(v′∗)]

)

[
β(f)− β(f ′)

]2

|v − v′|N < +∞,

where Evv′ is the hyperplane orthogonal to [v, v′], going through v.
In the case of an angular singularity, the use of Fourier analysis,

performed in [6], allowed the removal of the difficulties linked to the
possible vanishing of f , and eventually led to the proof of the local
smoothness in log H. But now we are discussing the case of a kinetic
singularity, and the situation is much more complicated because the
Fourier transform behaves nicely as regards the angular part of the
cross-section, but not the kinetic part. One could wonder whether a
method similar to the one used by Lions [39] may work in that case.

If this conjecture was false, this would mean that such approxima-
tions as (60) are certainly non relevant from the physical point of view,
since they would not enjoy the important compactifying property of
the Debye potential.

Appendix : On the defect measure

In spite of our remarks on our notion of weak solutions, the reader
may legitimately ask how far we are from being able to build a theory
of renormalized solutions in the usual sense, or equivalently to prove
that the defect measure automatically vanishes. In this long appendix,
we discuss a strategy for such a result, and the main difficulties which
arise in its tentative implementation.

First of all, let us review existing papers where similar problems are
treated. The first one is the work [22] by DiPerna and Lions, where
the Boltzmann operator with cut-off is perturbed by a linear diffusion
operator ∆v. In a renormalization procedure, the diffusive term a priori
leads to a defect measure. But DiPerna and Lions are able to show that
the entropy dissipation bound is sufficient to prove its vanishing. In [44]
it was also shown that this is formally true for the Landau equation,
but the manipulations were too complicated to give hope of rigorous
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justification. A second family of works where this problem is treated is
the series of papers initiated by Blanchard, Murat and co-workers, on
renormalized parabolic equations (see [11, 12] and the numerous works
cited therein).

By comparison with all these works, the first serious difficulty in
our problem is that we do not have a good smoothness estimate for
truncations of the solution. The best a priori smoothness estimate at
our disposal for the Boltzmann equation without cut-off is given by the
entropy dissipation. By the same arguments as discussed in [7], it is
possible to prove from the entropy dissipation estimate the bound

(62)

∫
B(f∗ + f ′∗)[

√
f −

√
f ′]2 −

∫
(Sf)f < +∞.

But we cannot exclude the possibility that both integrals in (62) be
infinite. Apparently, the best available estimate is

(63)

∫
B(f∗ + f ′∗)[β(f)− β(f ′)]2 < +∞

for, say β(f) = f/(1 + f). Assume, to fix the ideas, that the cross-
section has an angular singularity of order 1+ν, ν > 0. Then from (63)
we can deduce

β(f) ∈ L2
t,x

(
AL,ε; H

ν/2
loc (RN

v )
)

,

where

AL,ε =

{
(t, x);

∫
f dv ≥ ε,

∫
f(1 + | log f |+ |v|2) dv ≤ L

}
.

Thus the smoothness estimate for β(f) holds only on a rough set in
(t, x).

On the other hand, in the Fokker-Planck-Boltzmann case, the en-
tropy dissipation yields the estimate

|∇f |2
f

∈ L1(R+ × RN
x × RN

v ),

or equivalently
√

f ∈ L2
t,x(H

1
v ). Also in [12] and related works, an

estimate like β(f) ∈ Lp
t (W

1,p
x ) is available. Thus the situation here

looks much worse...

Let us continue our discussion. We think that two phenomena are
strongly underlying the arguments of the aforementioned works, and
in particular of DiPerna and Lions [22] :

1) For a well-chosen family of nonlinearities (βα), approaching the
identity as α → 0, the corresponding defect measure µα := µ[βα] goes
to 0;
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2) Using a bit of smoothness, one can prove that µα is nondecreasing
as α decreases to 0.

Combination of points 1) and 2) implies of course that µα is vanishing
for all α.

Let us discuss first point 1). The simplest way to prove it is by direct
control at the level of the sequence of approximate solutions. This is
the approach used in [22] : for a given nonlinearity β, used in the
renormalized formulation, the authors construct a family βα = Ψα ◦ β
of other admisssible nonlinearities, such that

(64) −[Ψα ◦ β]′′(f) ≤ ε(α)

f
, ε(α) −−→

α→0
0

(α corresponds to the couple (θ,R) in the notations of [22]). Combin-
ing (64) with the trivial estimate∫

dµ[βα] ≤ lim
n→∞

∫
−(Ψα ◦ β)′′(fn)|∇fn|2,

and with the entropy dissipation bound

(65) sup
n

∫ |∇fn|2
fn

< +∞,

where the integral is taken over all of [0, T ] × RN
x × RN

v , it becomes
clear that ∫

dµ[βα] −−→
α→0

0.

In our case, such a control is not available. Indeed, roughly speaking,
taking into account our worse entropy dissipation estimate (63), we
would need to find something like

(66) −(Ψα ◦ β)′′(f) ≤ ε(α)

(1 + f)2
.

This is plainly impossible ! Indeed, assuming (Ψα ◦ β)′(0) ' 1, (Ψα ◦
β)′(+∞) ' 0 as α → 0, we see that

∫ −(Ψα ◦ β)′′(f) df is of order 1.
Thus, what makes (64) possible and (66) impossible is the fact that∫ +∞
0

df/f = +∞, while
∫ +∞

0
df/(1 + f)2 < +∞.

There is another way towards point 1) above, exploited in [12] and
related works. Recall that our renormalized equation is of the form

∂βα(f)

∂t
+ v · ∇xβα(f) = β′α(f)Q(f, f) + µα

= (R1)α + (R2)α + (R3)α + µα.

Let us integrate this equation in all variables on [0, T ] × RN
x × RN

v .
We should actually first multiply by a cut-off function with compact
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support, and then pass to the limit, but this is not a problem. Recalling
that

∫
(R2) = 0 and (R3) ≥ 0, we obtain

∫
dµα ≤

∫

RN
x ×RN

v

βα(f(T, ·, ·)) dx dv −
∫

RN
x ×RN

v

βα(f0) dx dv

+

∣∣∣∣
∫

(R1)α dt dx dv

∣∣∣∣ .

Since βα approaches the identity as α → 0, in view of the mass con-
servation we have

∫
βα(T, ·, ·) − ∫

βα(f0) −→ 0 as α → 0. Thus∫
dµα −→ 0 as soon as

∫
(R1)α −→ 0, i.e

(67)

∣∣∣∣
∫

[fβ′α(f)− βα(f)]Sf

∣∣∣∣ −−→α→0
0.

Under what conditions can such an identity hold true ? In the case
βα(f) = f/(1 + αf), we cannot conclude to (67) under a plain L1

estimate. Actually, an L2 estimate for f in all variables would be
sufficient, since in that case

βα(f)− fβ′α(f) =
αf 2

(1 + δf)2
≤

[
sup
y∈R+

y

(1 + y2)

]
f,

and fSf lies in L1 if f(1+|v|2) ∈ L1, f ∈ L2. Thus invoking Lebesgue’s
dominated convergence theorem would imply the result.

Even with other choices of nonlinearities, we have been unable to do
better than this L2 condition. As a conclusion, we see that point 1)
above seems out of reach. This is also a consequence of the problem of
large cancellations, since the bound we would need is precisely finiteness
of the second integral in (62).

Let us now discuss point 2), which is subtler (but also inaccessible
so far !) The main idea behind point 2), as used in [22], is that the
family βα = Ψα ◦ β is constructed in such a way that

(68) 1 ≤ Ψ′
α ≤ Cα

The lower bound is natural : starting from a sublinear concave nonlin-
earity, it is natural to construct better approximations of the identity
by increasing the derivative. And the fact that Ψ′

α ≥ 1 formally implies
that

(69) µ[Ψα◦β] ≥ µ[β].
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Indeed, if we multiply the equation for β(f) by Ψ′
α(β(f)), we find, using

the chain-rule,

∂

∂t
[Ψα ◦ β(f)] + v · ∇x[Ψα ◦ β(f)] = (Ψα ◦ β)′(f)Q(f, f) + Ψ′

α(β(f))µ[β]

≥ (Ψα ◦ β)′(f)Q(f, f) + µ[β].

But, by definition of the defect measure,

∂

∂t
[Ψα ◦ β(f)] + v · ∇x[Ψα ◦ β(f)] = (Ψα ◦ β)′(f)Q(f, f) + µ[Ψα◦β],

so that (69) holds. To make this argument perfectly correct, it would be
necessary to give a precise definition of Ψ′

α(β(f)) dµα — but whatever
the definition, it is reasonable to assume that this quantity is greater
than dµα in distributional sense.

Thus we see that point 2) above actually amounts to a justification of
the chain-rule for renormalized solutions; more precisely, a justification
of the formal equality

(70) Ψ′(β(f))× [β′(f)Q(f, f)] = (Ψ ◦ β)′(f)Q(f, f)

(from now on, we drop the index α for Ψ, since we just need to work
for a fixed index).

Let us discuss this point more in detail in the case of the Boltzmann
equation without cut-off. First of all, there are two possible ways of
rigorously defining the right-hand side of (70) as a distribution. The
first is to use our renormalized formulation with nonlinearity Ψ ◦ β. In
doing so, we assume that Ψ ◦ β satisfies all the necessary requirements
– in particular, concavity.

The second way is to multiply the definition of β′(f)Q(f, f) by the
function Ψ′(β(f)). How to give sense to this one ?

a) Ψ′(β(f))(R1) is well-defined as Ψ′(β(f))[fβ′(f)− β(f)](Sf);

b) Ψ′(β(f))(R3) is still well-defined as a nonnegative L1
loc function.

c) It remains to give sense to Ψ′(β(f))Q(f, β(f)). This is easy if we
recall our general asymmetric renormalized formulation, with β(f) in

place of f ! This will give rise to three terms denoted by (R̃1), (R̃2),

(R̃3).
This second definition is nothing but an iterated renormalization pro-

cedure. Formal identification of both formulas for Ψ′(β(f))β′(f)Q(f, f)
leads to the two identities

Ψ′(β(f))[fβ′(f)− β(f)] + [β(f)Ψ′(β(f))−Ψ(β(f))]

= f(Ψ ◦ β)′(f)−Ψ ◦ β(f),
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ΓΨ◦β(f, f ′) = Ψ′(β(f))Γβ(f, f ′) + ΓΨ

(
β(f), β(f ′)

)
,

valid for all nonnegative numbers f , f ′. These identities, which actually
reduce to the usual chain-rule, ensure that our two different definitions
of Ψ′(β(f))β′(f)Q(g, f) coincide.

If we could multiply the renormalized equation by Ψ′(β(f)) and re-
cover the iterated renormalization formulation, we would be done. But
the problem is that there are two different ways of seeing the term
(R2) = Q(f, β(f)) :

- by duality, acting on D′;
- or in renormalized framework, in the definition of Ψ′(β(f))Q(f, β(f)).
One can see the regularization argument in [22] as a way to solve this

problem : introduce a family of mollifiers (ρε) in variables t, x, v, defined
through the usual procedure, convolve the equation in renormalized
form by ρε and multiply by Ψ′(β(f) ∗ ρε). Then, what comes out is

∂

∂t
Ψ(β(f) ∗ ρε) + [v · ∇xΨ(β(f))] ∗ ρε Ψ′(β(f) ∗ ρε)

≥ Ψ′(β(f) ∗ ρε)[β
′(f)Q(f, f)] ∗ ρε + µ ∗ ρε,

where we have used again Ψ′ ≥ 1. We can pass to the limit as ε → 0
in the left-hand side (transport term), as shown in [22] by a simple
argument. Also µ ∗ ρε −→ µ weakly, and Ψ′(β(f) ∗ ρε)(Rj) ∗ ρε −→
Ψ′(β(f))(Rj) as ε → 0, for j = 1, 3.

In order to conclude the argument leading to point 2), we only need
to prove that the term in (R2) converges, i.e.

(71) Ψ′(β(f) ∗ ρε)Q(f, β(f)) ∗ ρε −−→
ε→0

Ψ′(β(f))Q(f, β(f)),

where the left-hand side is defined by duality, and the right-hand side is
defined in renormalized sense. This is a problem for a fixed function f ,
but on which we lack any good estimate. All we have at our disposal is
the entropy dissipation bound (63), and due to the lack of smoothness
of f∗, it is not clear at all that it yields any regularity estimate on
β(f) ∗ ρε (think that the convolution has to be in all variables t, x, v
for the convergence of the transport term to be ensured). At least an
L2 estimate in the x-variable seems necessary to apply variants of the
usual lemmas on commutators between convolution-regularization and
differential operators, wich are used in [24] for instance.

Compare this situation with that of [22]. If one wants to use the
above line of reasoning to prove vanishing of the defect measure in [22],
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then one only needs to show

Ψ′(β(f) ∗ ρε)[∆β(f)] ∗ ρε −−→
ε→0

Ψ′(β(f))∆β(f)

= ∆[Ψ ◦ β(f)]−Ψ′′ ◦ β(f)|∇β(f)|2,

where the last term is defined as −|∇(γ ◦ β(f))|2, with γ chosen in
such a way that (γ′)2 = −Ψ′′. Since β(f) ∈ L2

t,x(H
1
v ), we see that

γ(β(f) ∗ ρε) converges towards γ(β(f)) in the same space, and this
implies the conclusion of [22].

On the other hand, in the case of the Boltzmann equation without
cut-off, this strategy seems doomed, at least because of the bad depen-
dence of the linear operator h 7−→ Q(f, h) on the space variable. Our
conviction is that there may yet not be enough a priori estimates at
our disposal to prove (71). In order to build stronger solutions to the
Cauchy problem, it is certainly necessary to go beyond the elementary
a priori estimates of mass, energy and entropy disipation, which are at
the basis of the theory of renormalized solutions. Of course, we shall
work to understand whether the techniques introduced here can help
gain further smoothness.
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École Normale Supérieure de Lyon, UMPA, 46 allée d’Italie,69364,
FRANCE. e-mail cvillani@umpa.ens-lyon.fr


