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Abstract. This memoir attempts at a systematic study of con-
vergence to stationary state for certain classes of degenerate diffu-

sive equations, taking the general form
∂f

∂t
+Lf = 0. The question

is whether and how one can overcome the degeneracy by exploiting
commutators.

In Part I, the focus is on a class of operators taking the abstract
form L = A∗A + B in a Hilbert space. A general Hilbertian result
is proven, which can be considered as a “spectral” counterpart
of Hörmander’s regularity theorem. Then I discuss an “entropic”
version of this result, which leads to more general statements but
needs more structure. The main example of application is the
linear Fokker–Planck equation; other examples are discussed.

In Part II, a different method is discussed, based on the in-
troduction of an auxiliary operator which has good commutation
and non-commutation properties with L. Some recent results are
reinterpreted in this formalism.

In Part III, a third method is discussed, applying to nonlinear
equations with very little structure. This one is the most general
but needs a lot of smoothness, and does not in general achieve the
exponential convergence. Applications to various models of fluid
mechanics, in particular the Boltzmann equation, are discussed.
My recent results with Desvillettes about the convergence to equi-
librium for the Boltzmann equation are extended and simplified in
this way.

The unity of the three parts comes from the method: in all
cases, the convergence to equilibrium is obtained by a carefully
designed Lyapunov functional, or family of Lyapunov functionals.
Many open problems and possible directions for future research are
discussed throughout the text.

In a long Appendix, I introduce some methods for the study of
global hypoellipticity, focusing on the kinetic Fokker–Planck equa-
tion once again.
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Introduction

In many fields of applied mathematics, one is led to study dissipa-
tive evolution equations involving (i) a degenerate dissipative operator,
and (ii) a conservative operator presenting certain symmetry proper-
ties, such that the combination of both operators implies convergence
to a uniquely determined equilibrium state. Typically, the dissipative
part is not coercive, in the sense that it does not admit a spectral gap;
instead, it may possess a huge kernel, which is not stable under the
action of the conservative part. This situation is very similar to prob-
lems encountered in the theory of hypoellipticity, in which the object
of study is not convergence to equilibrium, but regularity. By analogy,
I shall use the word hypocoercivity, suggested to me by Thierry Gal-
lay, to describe this phenomenon. This vocable will be used somewhat
loosely in general, and in a more precise sense when occasion arises.

Once the existence and uniqueness of a steady state has been estab-
lished (for instance by direct computation, or via an abstract theorem
such as Perron–Frobenius), there are plenty of soft tools to prove con-
vergence to this steady state. It is much more tricky and much more
instructive to find estimates about rates of convergence, and this is the
question which will be addressed here.

Both hypoellipticity and hypocoercivity often occur together in
the study of linear diffusion generators satisfying Hörmander’s bracket
condition. It is for such equations that theorems of exponentially
fast convergence to equilibrium were first established via probabilistic
tools [41, 45, 46, 53], taking their roots in the Meyn-Tweedie theory of
the asymptotic behavior of Markov chains. Some of these studies were
motivated by the study of finite-dimensional approximations of ran-
domly forced two-dimensional Navier-Stokes equations [18, 40, 41];
since then, the theory has been developed to the extent that it can
deal with truly infinite-dimensional systems [30]. In all these works,
exponential convergence is established, but there are no quantitative
estimates of the rate. Moreover, these methods usually try to capture
information about path behavior, which may be useful in a probabilistic
perspective, but is more than what we need.
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2 INTRODUCTION

Analytical approaches can be expected to provide more precise re-
sults; they have been considered in at least three (quite different, and
complementary) settings:

- For nonlinear equations possessing a distinguished Lyapunov
functional (entropy, typically), robust methods, based on functional
inequalities, time-derivative estimates and interpolation, have been de-
veloped to establish convergence estimates in O(t−∞), i.e. faster than
any inverse power of time. These methods have been applied to the
linear (!) Fokker–Planck equation [14], the Boltzmann equation [16],
and some variants arising in the context of kinetic theory [9, 22]. So
far, they rely crucially on strong regularity a priori estimates.

- For linear hypoelliptic equations enjoying some structural
properties, more specific methods have been developed to prove (ide-
ally) exponential convergence to equilibrium with explicit bounds on
the rate. Up to now, this approach has been mainly developed by
Hérau and Nier [34], Eckmann and Hairer [20], Helffer and Nier [32],
for second-order differential operators in Hörmander’s form (a sum of
squares of derivations, plus a derivation). It uses pseudo-differential
operators, and a bit of functional calculus; it can be seen as an ex-
tension of Kohn’s celebrated method for the study of hypoellipticity
of Hörmander operators. In fact, the above-mentioned works estab-
lish hypoellipticity at the same time as hypocoercivity, by considering
functional spaces with polynomial weights in both Fourier space and
physical space. After a delicate spectral analysis, they localize the spec-
trum inside a cusp-like region of the complex plane, and then deduce
the exponential convergence to equilibrium. Again, in some sense these
methods capture more than needed, since they provide information on
the whole spectrum.

- Finally, Yan Guo recently developed a new method [28], which he
later pushed forward with Strain [29, 52], to get rates of convergence
for nonlinear kinetic equations in a close-to-equilibrium regime. Al-
though the method is linear in essence, it is based on robust functional
inequalities such as interpolation or Poincaré inequalities; so it is in
some sense intermediate between the two previously described lines of
research.

The goal of this memoir is to start a systematic study of hypocoer-
civity in its own right. The basic problem considered here consists
in identifying general structures in which the interplay between a “con-
servative” part and a “degenerate dissipative” part lead to convergence
to equilibrium.
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With respect to the above-mentioned works, the novelty of the ap-
proach explored here resides in its abstract nature and its simplicity.
In particular, I wish to convey the following two messages:

1. Hypocoercivity is related to, but distinct from hypoellipticity,
and in many situations can be established quantitatively independently
of regularity issues, or after regularity issues have been settled.

2. There are some general and simple techniques, based on very
elementary but powerful algebraic tricks, by which one can often reduce
a mysterious hypocoercive situation to a much more standard coercive
one.

This memoir is divided into three parts.

Part I focuses on the particular case of operators which (as in [20,
32, 34]) can be written in “Hörmander form” A∗A + B, where A and
B are possibly unbounded operators on a given Hilbert space. These
results have been applied to several models, such as the kinetic Fokker–
Planck equation, the linearized Landau–Lifschitz–Gilbert–Maxwell sys-
tem in micromagnetism [10], and a model problem for the stability of
the Oseen vortices [24].

Part II, by far the shortest, remains at a linear level, but considers
operators which cannot necessarily be written in the form A∗A + B,
at least for “tractable” operators A and B. In this part I shall give
an abstract version of a powerful hypocoercivity theorem recently es-
tablished by Mouhot and Neumann [43], explain why we cannot be
content with this theorem, and give some suggestions for research in
this direction.

In Part III I shall consider fully nonlinear equations, in a scale
of Sobolev-type spaces, in presence of a “good” Lyapunov functional.
In this setting I shall obtain results that can apply to a variety of
nonlinear models, conditionally to smoothness bounds. In particular
I shall simplify the proof of the main theorem in [16].

Though these three settings are quite different, and far from being
unified, there is a unity in the methods that will be used: construct
a Lyapunov functional by adding carefully chosen lower-order
terms to the “natural” Lyapunov functional. This simple idea
will turn out to be quite powerful.

The method will be presented in a rather systematic and abstract
way. There are several motivations for this choice of presentation.
First, the methods are general enough and can be applied in various
contexts. Also, this presentation may be pedagogically relevant, by
emphasizing the most important features of the problem. Last but not



4 INTRODUCTION

least, most of the time I really had to set the problems in abstract
terms, to figure out a way of attacking it.

No attempt will be made here for a qualitative study of the approach
to equilibrium, but I believe this is a very rich topic, that should be
addressed in detail in the future. One of the main outcomes of my
work with Laurent Desvillettes [16] was the prediction that solutions
of the Boltzmann equation, while approaching equilibrium, would os-
cillate between “close to hydrodynamic” and “close to homogeneous”
states. To some extent, this guess was in contradiction with a com-
monly accepted idea according to which the large-time behavior should
be dominated by the hydrodynamic regime; nevertheless these oscilla-
tions have been spectacularly confirmed in numerical simulations by
Francis Filbet. Further developments can be found in [23]; the re-
sults obtained by numerical simulations are so neat that they demand
a precise explanation.

Research in the area of hypocoercivity is currently developing fast
thanks to the efforts of several other researchers such as Thierry Gallay,
Frédéric Hérau, Clément Mouhot, and others. I expect that further
important results will soon be available thanks to their efforts, and
hope that this memoir will become the starting point of a much more
developed theory.

It is a pleasure to thank Clément Mouhot for a careful reading and
many comments on the present manuscript.



Part I

L = A∗A + B



In this part I shall study the convergence to equilibrium for degen-
erate linear diffusion equations where the diffusion operator takes the
abstract form A∗A + B, B∗ = −B.

The main abstract theorem makes crucial use of commutators,
in the style of Hörmander’s hypoellipticity theorem. In its simplest
form, it reduces the problem of convergence to equilibrium for the non-
symmetric, non-coercive operator A∗A + B, to that of the symmetric,
possibly coercive operator A∗A+[A, B]∗[A, B]. If the latter operator is
not coercive, then one may consider iterated commutators [[A, B], B],
[[[A, B], B], B], etc. in addition to just [A, B].

One of the first main results (Theorem 24) can be informally stated
as follows: Let A = (A1, . . . , Am), B∗ = −B, and L = A∗A + B
be linear operators on a Hilbert space H. Define iterated commuta-
tors Cj and remainders Rj (1 ≤ j ≤ Nc) by the identities C0 =

A, [Cj, B] = Cj+1 + Rj+1 (j ≤ Nc), CNc+1 = 0. If
∑Nc

j=0 C∗
j Cj is

coercive, and the operators [A, Ck], [A∗, Ck], Rk satisfy certain bounds,
then ‖e−tL‖H1→H1 = O(e−λt), where the “Sobolev” space H1 is defined
by the Hilbert norm ‖h‖2

H1 = ‖h‖2 +
∑

‖Cjh‖2.

The key ingredient in the proof is the construction of an auxiliary
Hilbert norm, which is equivalent to the H1 Hilbert norm, but has
additional “mixed terms” of the form 〈Cjh, Cj+1h〉.

Applied to the kinetic Fokker–Planck equation, these theorems will
yield results of convergence to equilibrium that are both more general
and more precise than previously known estimates.

After this “abstract” L2 framework, a “concrete” L log L framework
will be considered, leading to results of convergence for very general
data (say finite measures).

My reflexion on this subject started during the preparation of my
Cours Peccot at the Collège de France (Paris), in June 2003, and has
crucially benefited from interactions with many people. The first draft
of the proof of Theorem 18 occurred to me while I was struggling to
understand the results of Frédéric Hérau and Francis Nier [34] about
kinetic Fokker–Planck equations. The construction of the anisotropic
Sobolev norm was partly inspired by the reading of papers by Yan
Guo [28] and Denis Talay [53]; although their results and techniques
are quite different from the ones in the present paper, they were the
first to draw my attention to the interest of introducing mixed terms
such as ∇vf · ∇xf . Denis also showed me a useful trick for getting
long-time estimates on the moments of certain hypoelliptic diffusion
equations, which is based on the construction of an adequate quadratic
form.
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Apart from the above-mentioned people, I was lucky enough to have
fruitful discussions on the subject with Bernard Helffer, Laurent Desvil-
lettes, Luc Rey-Bellet, Jean-Pierre Eckmann, Martin Hairer, Clément
Mouhot, Stefano Olla, Pierre-Louis Lions, Patrick Cattiaux and Ar-
naud Guillin, as well as with Christian Schmeiser and Denis Serre,
who both suggested a relation between my results and Kawashima’s
condition in the theory of hyperbolic systems of conservation laws.
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1. Notation

1.1. Basic notation. Let H be a separable (real or complex)
Hilbert space, to be thought of as L2(µ), where µ is some equilib-
rium measure; H is endowed with a norm ‖ · ‖ coming from a scalar
(or Hermitian) product 〈·, ·〉.

Let V be a finite-dimensional Hilbert space (say Rm or Cm, depend-
ing on whether H is a real or complex Hilbert space). Typically, V will
be the space of those variables on which a certain diffusion operator
acts. The assumption of finite dimension covers all cases that will be
considered in applications, but it is not essential.

Let A : H → H⊗V ≃ Hm be an unbounded operator with domain
D(A), and let B : H → H be an unbounded antisymmetric operator
with domain D(B):

∀h, h′ ∈ D(B), 〈Bh, h′〉 = −〈h, Bh′〉.
I shall assume that there is a dense topological vector space S in H
such that S ⊂ D(A) ∩ D(B) and A (resp. B) continuously sends S
into S ⊗ V (resp. S); this assumption is here only to guarantee that
all the computations that will be performed (involving a finite number
of operations of A, A∗ and B) are authorized. As a typical example,
S would be the Schwartz space S(RN ) of C∞ functions f : RN → R

whose derivatives of arbitrary order decrease at infinity faster than all
inverse polynomials; but it might be a much larger space in case of
need.

If a linear operator S is given, I shall denote by ‖S‖ its operator
norm:

‖S‖ = sup
h 6=0

‖Sh‖
‖h‖ = sup

‖h‖,‖h′‖≤1

〈Sh, h′〉.

If there is need to emphasize that S is considered as a linear operator
between two spaces H1 and H2, the symbol ‖S‖ may be replaced by
‖S‖H1→H2.

The norm ‖A‖ of an array of operators (A1, . . . , Am) is defined as√∑
i ‖Ai‖2; the norm of a matrix-valued operator (Ajk) by

√∑
‖Ajk‖2;

etc.
The identity operator X → X, viewed as a linear mapping, will

always be denoted by I, whatever its domain. Often a multiplication
operator (mapping a function f to fm, where m is a fixed function)
will be identified with the multiplicator m itself.

Throughout the text, the real part will be denoted by ℜ.

1.2. Commutators. In the sequel, commutators involving A and
B will play a crucial role. Since A takes its values in H⊗V and B is only
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defined in H, some notational convention should first be made precise,
since [A, B], for instance, does not a priori make sense. I shall resolve
this issue by just tensorizing with the identity: [A, B] = AB−(B⊗I)A
is an unbounded operator H → H⊗ V. In a more pedestrian writing,
[A, B] is the row of operators ([A1, B], . . . , [Am, B]). Then A2 stands for
the matrix of operators (AjAk)j,k, [A, [A, B]] for ([Aj , [Ak, B]])j,k, etc.
One should be careful about matrix operations made on components:
For instance, [A, A∗] stands for ([Aj , A

∗
k]j,k), which is an operator H →

H ⊗ V ⊗ V, while [A∗, A] stands for
∑

j [A
∗
j , Aj ], which is an operator

H → H. Also note that [A, A] stands for the array ([Aj , Ak])j,k, and
is therefore not necessary equal to 0. Whenever there is a risk of
confusion, I shall make the notation more explicit.

1.3. Relative boundedness. Let S and T be two unbounded
linear operators on a Hilbert space H, and let α ≥ 0; then the operator
S is said to be α-bounded relatively to T if D(T ) ⊂ D(S), and

∀h ∈ D(S), ‖Sh‖ ≤ α‖Th‖;
or equivalently, S∗S ≤ αT ∗T . If S is α-bounded with respect to T for
some α ≥ 0, then S is said to be bounded relatively to T . This will be
sometimes abbreviated into

S 4 T.

Note that S and T need not take values in the same space. Of course,
boundedness relative to I is just plain boundedness.

This notion can be generalized in an obvious way into relative boud-
edness with respect to a family of operators: An operator S is said to
be α-bounded relatively to T1, . . . , Tk if ∩D(Tj) ⊂ D(S), and

∀h ∈ D(S), ‖Sh‖ ≤ α
(
‖T1h‖ + . . . + ‖Tkh‖

)
.

If such an α exists, then S is said to be bounded relatively to T1, . . . , Tk,
and this will naturally be abbreviated into

S 4 T1, . . . , Tk.

1.4. Abstract Sobolev spaces. The study of partial differential
equations often relies on Sobolev spaces, especially in a linear context.
If one thinks of the Hilbert space H as a (weighted) L2 space, there
is a natural abstract definition of “Sobolev norm” adapted to a given
abstract coercive symmetric operator L = A∗A: define the Hk-Sobolev
norm ‖ · ‖Hk by

‖h‖2
Hk := ‖h‖2 +

k∑

ℓ=1

‖Aℓh‖2.
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Here is a generalization: When some operators C0, . . . , CN are given
(playing the same role as derivation operators along orthogonal direc-
tions in R

n), one can define
(1.1)

‖h‖2
H1 := ‖h‖2 +

N∑

j=0

‖Cjh‖2, ‖h‖2
Hk := ‖h‖2 +

k∑

ℓ=0

N∑

j=0

‖(Cj)
ℓh‖2.

Of course, there is an associated scalar product, which will be denoted
by 〈·, ·〉H1 , or 〈·, ·〉Hk .

1.5. Calculus in Rn. Most of the examples discussed below take
place in Rn; then I shall use standard notation from differential cal-
culus: ∇ stands for the gradient operator, and ∇· for its adjoint in
L2(Rn), which is the divergence operator.

Example 1. Let x = (x1, . . . , xn) and v = (v1, . . . , vn) stand for
two variables in Rn. Let A = ∇v, then ∇2

v is the usual Hessian operator
with respect to the v variable, which can be identified with the matrix
of second-order differential operators (∂2/∂vj∂vk) (j, k ∈ {1, . . . , n}).
Similary, if a and b are smooth scalar functions, then [a∇v, b∇x] is the
matrix of differential operators [a ∂vj

, b ∂xk
].

The scalar product of two vectors a and b in Rn or Cn will be
denoted either by 〈a, b〉 or by a · b. The norm of a vector a in Rn or
Cn will be denoted simply by |a|, and the Hilbert–Schmidt norm of an
n × n matrix M (with real or complex entries) by |M |.

The usual Brownian process in Rn will be denoted by (Bt)t≥0.
The notation Hk will stand for the usual Sobolev space in R

n:
explicitly, ‖u‖2

Hk =
∑

j≤k ‖∇ju‖2
L2. Sometimes I shall use subscripts

to emphasize that the gradient is taken only with respect to certain
variables; and sometimes I shall indicate a reference measure if it is not
the Lebesgue measure. For instance, ‖u‖2

H1
v(µ) =

∫
|u|2 dµ+

∫
|∇vu|2 dµ.

2. Operators L = A∗A + B

For the moment we shall be concerned with linear operators of the
form

(2.1) L := A∗A + B, B∗ = −B,

to be thought as the negative of the generator of a certain semigroup
(St)t≥0 of interest: St = e−tL. (Of course, up to regularity issues, any
linear operator L with nonnegative symmetric part can be written in
the form (2.1); but this will be interesting only if A and B are “simple
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enough”.) In Proposition 2 below I have gathered some properties of
L which can be expressed quite simply in terms of A and B.

2.1. Dirichlet form and kernel of L. Introduce

K := Ker L, Π := orthogonal projection on K, Π⊥ = I − Π.

Proposition 2. With the above notation,
(i) ∀h ∈ D(A∗A) ∩ D(B), ℜ 〈Lh, h〉 = ‖Ah‖2;
(ii) K = Ker A ∩ KerB.

Proof. The proof of (i) follows at once from the identities

〈A∗Ah, h〉 = 〈Ah, Ah〉 = ‖Ah‖2, ℜ 〈Bh, h〉 = 0.

It is clear that KerA ∩ Ker B ⊂ K. Conversely, if h belongs to K,
then 0 = ℜ〈Lh, h〉 = ‖Ah‖2, so h ∈ KerA, and then Bh = Lh−A∗Ah =
0. This concludes the proof of (ii). �

2.2. Nonexpansivity of the semigroup. Now it is assumed
that one can define a semigroup (e−tL)t≥0, i.e. a mapping (t, h) 7−→
e−tLh, continuous as a function of both t and h, satisfying the usual
rules e0L = Id , e−(t+s)L = e−tLe−sL for t, s ≥ 0 (semigroup property),
and

∀h ∈ D(L),
d

dt

∣∣∣∣
t=0+

e−tLh = −Lh.

As an immediate consequence, for all h ∈ D(A∗A) ∩ D(B),

1

2

d

dt

∣∣∣∣
t=0+

‖e−tLh‖2 = −ℜ 〈Lh, h〉 = −‖Ah‖2 ≤ 0.

This, together with the semigroup property, the continuity of the semi-
group and the density of the domain, implies that the semigroup is
nonexpansive, i.e. its operator norm at any time is bounded by 1:

∀t ≥ 0 ‖e−tL‖H→H ≤ 1.

2.3. Derivations in L2(µ). In most examples considered later,
the Hilbert space H takes the form L2(µ∞), for some equilibrium
measure µ∞(dx) = ρ∞(x) dx on Rn, with density ρ∞ with respect to
Lebesgue measure; V = Rm, A = (A1, . . . , Am), and the Aj ’s and B
are derivations on R

n, i.e. there are vector fields aj(x) and b(x) on R
n

such that

Ajh = aj · ∇h, Bh = b · ∇h.

In short, there is an m × n matrix σ = σ(x) such that

A = σ∇.
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The next Proposition presents some useful calculation rules in that
context. It will be assumed that everything is smooth enough: for
instance ρ∞ lies in C2(Rn) and it is positive everywhere; and σ, b are
C1. The notation σ∗ stands for the transpose (adjoint) of σ.

Proposition 3. With the above notation and assumptions,

(i) B∗ = −B ⇐⇒ ∇ · (bρ∞) = 0;

(ii) A∗g = −∇ · (σ∗g) −
〈
∇ log ρ∞, σ∗g〉.

Remark 4. As a consequence of Proposition 3(ii), the linear second-
order operator −L =

∑
A2

j − (B +
∑

cjAj) has the Hörmander form
(a sum of squares of derivations, plus a derivation). The form A∗A+B
is however much more convenient for the purpose of the present study
— just as in [20].

Proof of Proposition 3. By polarization, the antisymmetry of
B is equivalent to

∀h ∈ H, 〈Bh, h〉 = 0.

But

〈Bh, h〉 =

∫

Rn

(b · ∇h)h ρ∞ =
1

2

∫

Rn

b · ∇(h2)ρ∞

= −1

2

∫

Rn

h2∇ · (bρ∞).(2.2)

If ∇ · (bρ∞) = 0, then the integral in (2.2) vanishes. If on the other
hand ∇ · (bρ∞) is not identically zero, one can find some h such that
this integral is nonzero. This proves statement (i).

To prove (ii), let g : Rn → Rm and h : Rn → R, then 〈A∗g, h〉
coincides with

〈g, Ah〉 =

∫

Rn

g · (σ∇h) ρ∞ = −
∫

(σ∗g) · ∇h ρ∞ = −
∫

Rn

∇ · (σ∗gρ∞)h

= −
∫

Rn

∇ · (σ∗g)h ρ∞ −
∫

Rn

σ∗g · (∇ log ρ∞)h ρ∞,

where the identity ∇ρ∞ = (∇ log ρ∞)ρ∞ was used. This proves (ii). �

The following proposition deals with the range of applicability for
diffusion processes.

Proposition 5. Let σ ∈ C2(Rn; Rm×n) and ξ ∈ C1(Rn; Rn), and
let (Xt)t≥0 be a stochastic process solving the autonomous stochastic
differential equation

dXt =
√

2σ(Xt) dBt + ξ(Xt) dt,
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where (Bt)t≥0 is a standard Brownian motion in Rm. Then

(i) The law (ρt)t≥0 of Xt satisfies the diffusion equation

(2.3)
∂ρ

∂t
= ∇ · (D∇ρ − ξρ), D := σσ∗;

(ii) Assume that the equation (2.3) admits an invariant measure
µ∞(dx) = ρ∞(x) dx (with finite or infinite mass), where ρ∞ lies in
C2(Rn) and is positive everywhere. Then the new unknown h(t, x) :=
ρ(t, x)/ρ∞(x) solves the diffusion equation

(2.4)
∂h

∂t
= ∇ · (D∇h) −

(
ξ − 2D∇ log ρ∞

)
· ∇h,

which is of the form ∂th+Lh = 0 with L = A∗A+B, B∗ = −B, if one
defines

(2.5) H := L2(µ∞); A := σ∇; B :=
(
ξ − D∇ log ρ∞

)
· ∇.

Proof. Claim (i) is a classical consequence of Itô’s formula. To
prove claim (ii), write

∂h

∂t
=

1

ρ∞
∇ ·
(
Dρ∞∇h + Dh∇ρ∞ − ξρ∞h

)

= ∇ · (D∇h) + 2D∇h · ∇ρ∞

ρ∞
− ξ · ∇h

+
h

ρ∞

[
∇ · (D∇ρ∞) −∇ · (ρ∞ξ)

]
.

As ρ∞ is a stationary solution of (2.3), the last term in square brackets
vanishes, which leads to (2.4). Define A and B by (2.5). Thanks to
Proposition 3 (ii), it is easy to check that

A∗Ah = −∇ · (D∇h) − D∇ log ρ∞ · ∇h,

so h indeed satisfies ∂th + Lh = 0. It only remains to check that
B∗ = −B. By Proposition 3 (i), it is sufficient to check that

∇ · (ρ∞(ξ − D∇ log ρ∞)) = −∇ · (D∇ρ∞ − ξρ∞)

vanishes; but this follows again from the stationarity of ρ∞. So the
proof of Proposition 5 is complete. �
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2.4. Example: The kinetic Fokker–Planck equation. The
following example will serve as an important application and model.
Consider a nice (at least C1) function V : R

n → R, converging to
+∞ fast enough at infinity (say V (x) ≥ K|x|α − C for some positive
constants K and C). For x, v ∈ Rn × Rn, set

f∞(x, v) :=
e−[V (x)+ |v|2

2
]

Z
, µ(dx dv) = f∞(x, v) dx dv,

where Z is chosen in such a way that µ is a probability measure. Define

H := L2(µ), V := R
n
v , A := ∇v, B := v · ∇x −∇V (x) · ∇v,

L := −∆v + v · ∇v + v · ∇x −∇V (x) · ∇v.

The associated equation is the kinetic Fokker–Planck equation with
confinement potential V , in the form

(2.6) ∂th + v · ∇xh −∇V (x) · ∇vh = ∆vh − v · ∇vh.

Before considering convergence to equilibrium for this model, one
should first solve analytical issues about regularity and well-posedness.
It is shown by Helffer and Nier [32, Section 5.2] that (2.6) generates a
C∞ regularizing contraction semigroup in L2(µ) as soon as V itself lies
in C∞(Rn). To study this equation for a less regular potential V , it is
always possible to regularize V into a smooth approximation Vε, then
perform all a priori estimates on the regularized problem, and finally
pass to the limit as ε → 0. The following well-posedness theorem
justifies this procedure by forcing the convergence of the approximate
solutions to the original solution.

Theorem 6. Let V ∈ C1(Rn), inf V > −∞, and let

E(x, v) := V (x) +
|v|2
2

, ρ∞ = e−E, µ(dx dv) = ρ∞(x, v) dv dx.

Then, for any h0 ∈ L2(µ), equation (2.6) admits a unique distribu-
tional solution h = h(t, x, v) ∈ C(R+;D′(Rn

x ×Rn
v ))∩L∞

loc(R+; L2(µ))∩
L2

loc(R+; H1
v (µ)), such that h(0, ·) = h0.

The proof of existence is a straightforward consequence of a stan-
dard approximation procedure together with the Helffer–Nier existence
results, and the a priori estimate
∫

h2(t, x, v) dµ(x, v) +

∫ t

0

∫
h2(s, x, v) dµ(x, v) ds

≤
∫

h2(0, x, v) dµ(x, v).
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There is more to say about the uniqueness statement, of which the
proof is deferred to Appendix A.20. The main subtlety lies in the
absence of any growth condition on ∇V ; this is overcome by a local-
ization argument inspired from [32, Proposition 5.5]. Apart from that,
Theorem 6 is just an exercise in linear partial differential equations.

Many people (including me) would rather think of (2.6) in the form

(2.7) ∂tf + v · ∇xf −∇V (x) · ∇vf = ∆vf + ∇v · (vf),

in which case f at time t can be interpreted (if it is nonnegative) as
a density of particles, or (if it is a probability density) as the law of a
random variable in phase space. To switch from (2.6) to (2.7) it suffices
to set f := f∞h. This however does not completely solve the problem
because the natural assumptions for (2.7) are much more general than
for (2.6). For instance, it is natural to assume that the initial datum
f0 for (2.7) is L2 with polynomial weight; or just L1, or even a finite
measure. Theorem 7 below yields a uniqueness result in such a setting,
however with more stringent assumptions on the initial datum. In the
next statement, M(Rn × R

n) stands for the space of finite measures
on Rn × Rn, equipped with the topology of weak convergence (against
bounded continuous functions).

Theorem 7. Let V ∈ C1(Rn), inf V > −∞, and let E(x, v) :=

V (x) + |v|2

2
. Then, for any f0 ∈ L2((1 + E) dx dv), equation (2.7)

admits a unique distributional solution f = f(t, x, v) ∈ C(R+;D′(Rn
x ×

R
n
v )) ∩ L∞

loc(R+; L2((1 + E) dx dv)) ∩ L2
loc(R+; H1

v (Rn
x × R

n
v )), such that

f(0, ·) = f0.
If moreover ∇2V is uniformly bounded, then for any finite mea-

sure f0 the equation (2.7) admits a unique solution f = f(t, x, v) ∈
C(R+; M(Rn

x × R
n
v )).

The proof of this theorem will be deferred to Appendix A.20.

3. Coercivity and hypocoercivity

3.1. Coercivity.

Definition 8. Let L be an unbounded operator on a Hilbert space

H, with kernel K, and let H̃ be another Hilbert space continuously and
densely embedded in K⊥, endowed with a scalar product 〈·, ·〉 eH and a

Hilbertian norm ‖ · ‖ eH. The operator L is said to be λ-coercive on H̃ if

∀h ∈ K⊥ ∩ D(L), ℜ〈Lh, h〉 eH ≥ λ‖h‖2
eH,

where ℜ stands for real part. The operator L is said to be coercive on

H̃ if it is λ-coercive on H̃ for some λ > 0.
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The most standard situation is when H̃ = K⊥ ≃ H/K. Then it is
equivalent to say that L is coercive on K⊥ (which will be abbreviated
into just: L is coercive), or that the symmetric part of L admits a
spectral gap.

Coercivity properties can classically be read at the level of the semi-
group (assuming it is well-defined), as shown by the next statement:

Proposition 9. With the same notation as in Definition 8, L is

λ-coercive on H̃ if and only if ‖e−tLh0‖ eH ≤ e−λt‖h0‖ eH for all h0 ∈ H̃
and t ≥ 0.

Proof. Assume by density that h0 ∈ H̃ ∩D(L). On one hand the
coercivity implies

d

dt

∣∣∣∣
t=0+

‖e−tLh0‖2
eH = −2ℜ

〈
Le−tLh0, e

−tLh0

〉
≤ −2λ ‖e−tLh0‖2,

so by Gronwall’s lemma

‖e−tLh0‖2
eH ≤ e−2λt‖h0‖2

eH.

Conversely, if exponential decay holds, then for any h0 ∈ H̃∩D(L),

ℜ 〈Lh0, h0〉 = lim
t→0

‖h0‖2
eH − ‖e−tLh0‖2

eH
2t

≥ lim inf
t→0

(1 − e−2λt)‖h0‖2
eH

2t
= λ‖h0‖2,

whence the coercivity. �

When an operator L is in the form (2.1), the coercivity of L follows
from the coercivity of A∗A, at least if B has a sufficiently large kernel:

Proposition 10. With the notation of Subsection 1.1, if A∗A is
λ-coercive on (Ker A)⊥ and Ker A ⊂ Ker B, then L is λ-coercive on
K⊥.

Proof. We know that K = Ker A ∩ Ker B = Ker A, so for any
h ∈ K⊥, 〈Lh, h〉 = ‖Ah‖2 ≥ λ‖h‖2. �

Example 11. Apart from trivial examples where B = 0, one can
consider the following operator from [4]:

L = −(∆x − x · ∇x) − (∆v − v · ∇v) + (v · ∇x − x · ∇v)

on L2(e−(|v|2+|x|2)/2 dx dv).
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The main problem in the sequel is to study cases in which A∗A
is coercive, but L is not, and yet there is exponential convergence to
equilibrium (i.e. to an element of K) for the semigroup (e−tL). In view
of Proposition 10, this can only happen if Ker L is smaller than Ker A.
Here is the most typical example: on H = L2(e−(|v|2+|x|2)/2 dv dx) again,
consider

L = −(∆v − v · ∇v) + (v · ∇x − x · ∇v).

Then Ker A is made of functions which depend only on x, but Ker L
only contains constants.

3.2. Hypocoercivity. To fix ideas, here is a (possibly mislead-
ing, but at least precise) definition of “hypocoercivity” in a Hilbertian
context.

Definition 12. Let H be a Hilbert space, L an unbounded opera-

tor on H generating a continuous semigroup (e−tL)t≥0, and H̃ another
Hilbert space, continuously and densely embedded in K⊥, endowed with
a Hilbertian norm ‖ · ‖ eH. The operator L is said to be λ-hypocoercive

on H̃ if there exists a finite constant C such that

(3.1) ∀h0 ∈ H̃, ∀t ≥ 0 ‖e−tLh0‖ eH ≤ Ce−λt‖h0‖ eH.

It is said to be hypocoercive on H̃ if it is λ-hypocoercive on H̃ for some
λ > 0.

Remark 13. With respect to the definition of coercivity in terms
of semigroups, the only difference lies in the appearance of the constant
C in the right-hand side of (3.1) (obviously C ≥ 1, apart from trivial
cases; C = 1 would mean coercivity). The difference between Defini-
tion 8 and Definition 12 seems to be thin in view of the following fact
(pointed to me by Serre): Whenever one has a norm satisfying inequal-
ity (3.1) for some constant C, it is always possible to find an equivalent
norm (in general, not Hilbertian) for which the same inequality holds
true with C = 1. Indeed, just choose

N(h) := sup
t≥0

(
eλt ‖e−tLh‖

)
.

In spite of these remarks, hypocoercivity is strictly weaker than co-
ercivity. In particular, hypocoercivity is invariant under change of

equivalent Hilbert norm on H̃, while coercivity is not. This has an
important practical consequence: If one finds an equivalent norm for
which the operator L is coercive, it follows that it is hypocoercive.
I shall systematically use this strategy in the sequel.
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Remark 14. It often happens that a certain space H̃ is convenient
for proving hypocoercivity, but this particular space is much smaller

than H (stated otherwise, the Hilbert norm on H̃ cannot be bounded

in terms of the Hilbert norm on H): typically, H̃ may be a weighted
Sobolev space, while H is a weighted L2 space. In that situation there
is in general no density argument which would allow one to go directly

from hypocoercivity on H̃, to hypocoercivity on H. However, such
an extension is possible if L satisfies a (hypoelliptic) regularization
estimate of the form

(3.2) ∀t0 > 0 ∃C(t0) < +∞; ∀t ≥ t0, ‖e−tL‖K⊥→ eH ≤ C(t0);

or, more generally, if L generates a semigroup for which there is expo-
nential decay of singularities:

(3.3)





∀t ≥ 0, e−tL = St + Rt,

∀t0 > 0 ∃C(t0) < +∞; ∀t ≥ t0, ‖St‖K⊥→ eH ≤ C(t0);

∃λ > 0; ∀t ≥ 0, ‖Rt‖K⊥→K⊥ ≤ Ce−λt.

Such assumptions are often satisfied in realistic models. For instance,
integral operators (generators of jump processes) usually satisfy (3.3)
when the kernel is integrable (finite jump measure), and (3.2) when the
kernel is not integrable. Diffusion operators of heat or Fokker–Planck
type usually satisfy (3.2).

3.3. Commutators. If the operators A∗A and B commute, then
so do their exponentials, and e−tL = e−tA∗Ae−tB. Then, since B is
antisymmetric, e−tB is norm-preserving, and it is equivalent to study
the convergence for e−tL or for e−tA∗A. On the other hand, if these
operators do not commute, one can hope for interesting phenomena.

Proposition 15. With the notation of Subsection 1.1, in particular
L = A∗A + B, define recursively the iterated commutators

C0 := A, Ck := [Ck−1, B],

and then K′ := ∩k≥0 KerCk. Then K ⊂ K′, and K′ is invariant for
e−tL.

Proof. Assume that K ⊂ Ker C0 ∩ . . . ∩ Ker Ck. Then, for all
h ∈ K ∩ S,

Ck+1h = CkBh − BCkh = CkBh = −CkA
∗Ah = 0.
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Thus K ⊂ Ker Ck+1. By induction, K is included in the intersection K′

of all Ker Cj.
Next, if h ∈ K′ ∩ S, then Lh = Bh, so CkLh = CkBh = Ck+1h +

BCkh = 0; since k is arbitrary, in fact Lh ∈ K′, so L leaves K′ invariant,
and therefore so does e−tL. �

In most cases of interest, not only does K′ coincide with K, but in
addition K′ can be constructed as the intersection of just finitely many
kernels of iterated commutators. Thanks to the trivial identity

k⋂

j=0

KerCj = Ker

(
k∑

j=0

C∗
j Cj

)
,

the condition that K′ is the intersection of finitely many iterated com-
mutators may be reformulated as follows:

(3.4) There exists Nc ∈ N such that Ker

(
Nc∑

j=0

C∗
j Cj

)
= Ker L.

Example 16. For the kinetic Fokker–Planck operator (2.6), Nc = 1
will do.

If the goal is to derive estimates on the rate of convergence, it is
natural to reinforce the above condition into a more quantitative one:

(3.5)

Nc∑

k=0

C∗
kCk is coercive on K⊥.

Condition (3.5) is more or less an analogue of Hörmander’s “rank r”
bracket condition (as explained later, r = 2Nc + 1 is the natural con-
vention), but in the context of convergence to equilibrium and spectral
gap, rather than regularization and elliptic estimates. There is how-
ever an important difference: Here we are taking brackets always with
B, while in Hörmander’s condition, brackets of the form, say, [Ai, Aj]
would be allowed. This modification is intentional: in all the cases of
interest known to me, there is no need to consider such brackets for
hypocoercivity problems. A basic example which will be discussed in
Appendix A.19 is the following: The differential operator

L := −(x2∂y
∗∂y + ∂x

∗∂x),

although not elliptic, is coercive (not just hypocoercive) in L2(γ)/R,
where γ is the gaussian measure on R2. For this operator, brackets of
the form [∂x, x∂y] play a crucial role in the regularity study, but they
are not needed to establish lower bounds on the spectral gap.
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Remark 17. It was pointed out to me by Serre that, when H is
finite-dimensional, condition (3.5) is equivalent to the statement that
KerA does not contain any nontrivial subspace invariant by B. In the
study of convergence to equilibrium for hyperbolic systems of conser-
vation laws, this condition is known as Kawashima’s nondegener-
acy condition [31, 37, 50]. It is not so surprising to note that the
very same condition appears in Hörmander’s seminal 1967 paper on
hypoellipticity [35, p. 148] as a necessary and sufficient condition for
a diffusion equation to be hypoelliptic, when the constant matrices A
and B respectively stand for the diffusion matrix and the linear drift
function.1

Taking iterated commutators may rapidly lead to cumbersome ex-
pressions, because of “lower-order terms”. In the present context, this
might be more annoying than in a regularity context, and so it will be
convenient to allow for perturbations in the definition of Ck, say

[Ck, B] = Ck+1 + Rk+1,

where Rk+1 is a “remainder term”, chosen according to the context,
that is controlled by C0, . . . , Ck. An easy and sometimes useful gener-
alization is to set

[Ck, B] = Zk+1Ck+1 + Rk+1,

where the Zk’s are auxiliary operators, typically multipliers, satisfying
certain identities.

Once the family (C0, . . . , CNc) is secured, one can introduce the
corresponding abstract Sobolev H1 norm as in (1.1). This norm will
be used on H, or (more often) on K⊥. On the latter space we may also
consider “homogeneous Sobolev norms” such as

(3.6) ‖h‖2
Ḣ1 :=

Nc∑

j=0

‖Cjh‖2.

Note that, with the above assumptions, the orthogonal space to
the kernel K in H1 does not depend on whether we consider the scalar
product of H or that of H1. (See the proof of Theorem 24 below.) So

1At first sight, it seems that both problems are completely different:
Kawashima’s condition is applied to systems of unknowns, while Hörmander’s ex-
ample deals with scalar equations. The analogy becomes less surprising when one
notices that for such a diffusion equation the fundamental solution, viewed as a
function of time, takes its values in the finite-dimensional space of Gaussian distri-
butions, so that the equation really defines a system.
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a natural choice for H̃ will be

H̃ = H1/K,

which is K⊥ equipped with the H1 norm.

4. Basic theorem

In this section linear operators satisfying a “rank-3” condition (Nc =
1 in (3.5)) are considered. Although this is a rather simple situation,
it is already of interest, and its understanding will be the key to more
complicated extensions; so I shall spend some time on this case. Here
it will be assumed for pedagogical reasons that the operators A and C
commute; this assumption will be relaxed in the next section.

Theorem 18. With the notation of Subsection 1.1, consider a lin-
ear operator L = A∗A + B (B antisymmetric), and define C := [A, B].
Assume the existence of constants α, β such that

(i) A and A∗ commute with C; A commutes with A (i.e. each Ai

commutes with each Aj);

(ii) [A, A∗] is α-bounded relatively to I and A;

(iii) [B, C] is β-bounded relatively to A, A2, C and AC;

Then there is a scalar product ((·, ·)) on H1/K, defining a norm equiv-
alent to the H1 norm, such that

(4.1) ∀h ∈ H1/K, ((h, Lh)) ≥ K
(
‖Ah‖2 + ‖Ch‖2

)

for some constant K > 0, only depending on α and β.

If, in addition,

A∗A + C∗C is κ-coercive

for some κ > 0, then there is a constant λ > 0, only depending on α, β
and κ, such that

∀h ∈ H1/K, ((h, Lh)) ≥ λ((h, h)).

In particular, L is hypocoercive in H1/K:

‖e−tL‖H1/K→H1/K ≤ c e−λt (c < +∞),

where both λ and c can be estimated explicitly in terms of upper bounds
on α and β, and a lower bound on κ.

Before stating the proof of Theorem 18, I shall provide some re-
marks and further explanations.
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Remark 19. Up to changing α and β, it is equivalent to impose
(ii) and (iii) above or to impose the seemingly more general conditions:

(ii’) [A, A∗] is α-bounded relatively to I, A and A∗;
(iii’) [B, C] is β-bounded relatively to A, A2, A∗A, C and AC.

Indeed,

〈A∗h, A∗h〉 = 〈AA∗h, h〉 = 〈A∗Ah, h〉 +
∑

i

〈[Ai, A
∗
i ]h, h〉,

so

‖A∗h‖2 ≤ ‖Ah‖2 + ‖[A, A∗]h‖ ‖h‖.
Then assumption (ii’) implies

‖A∗h‖2 ≤ ‖Ah‖2 + α
(
‖h‖2 + ‖Ah‖ ‖h‖ + ‖A∗h‖ ‖h‖

)

≤ ‖Ah‖2 + α
(
‖h‖2 + ‖Ah‖ ‖h‖

)
+

1

2
‖A∗h‖2 +

α2

2
‖h‖2,

and it follows that A∗ is bounded relatively to I and A, so that (ii)
holds true. This also implies that A∗A is bounded relatively to A2 and
A, so (iii’) implies (iii).

Remark 20. Assumption (ii) in Theorem 18 can be relaxed into
(ii”) [A, A∗]A is relatively bounded with respect to A and A2;

where by convention

∥∥[A, A∗]Ah
∥∥2

=
∑

i

∥∥∥
∑

j

[Ai, A
∗
j ]Ajh

∥∥∥
2

.

Remark 21. Here is a crude heuristic rule helping to understand
assumptions (i) to (iii) above. As is classical in Hörmander’s theory,
define the weights w(O) of the operators involved, by

w(A) = w(A∗) = 1, w(B) = 2, w([O1, O2]) = w(O1) + w(O2).

Then rules (i) to (iii) guarantee that certain key commutators can be
estimated in terms of operators whose order is strictly less: for instance,
the weight of [B, C] is 2 + 3 = 5, and assumption (iii) states that it
should be controlled by some operators, for which the maximal weight
is 4. (This rule does not however explain why I is allowed in the
right-hand side of (ii), but not in (iii); so it might be better to think
in terms of Assumption (ii”) from Remark 20 rather than in terms of
Assumption (ii).)

Remark 22. In particular cases of interest, it may be a good idea
to rewrite the proof of Theorem 18, taking into account specific features
of the problem considered, so as to obtain better constants λ and C.
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4.1. Heuristics and strategy. The proof of Theorem 18 is quite
elementary; in some sense, the most sophisticated analytical tool on
which it rests is the Cauchy–Schwarz inequality. The argument con-
sists in devising an appropriate Hilbertian norm on H1/K, which will
be equivalent to the usual norm, but will turn L into a coercive oper-
ator. One can see an analogy with a classical, elementary proof of a
standard theorem in linear algebra [5, pp. 147-148]: If the real parts of
the eigenvalues of a matrix M are all positive, then e−tM → 0 (expo-
nentially fast) as t → ∞.

Define

(4.2) ((h, h)) = ‖h‖2 + a ‖Ah‖2 + 2bℜ 〈Ah, Ch〉 + c ‖Ch‖2,

where the positive constants a, b, c will be chosen later on, in such a
way that 1 ≫ a ≫ b ≫ c. (The constant c here is not the same as the
one in the conclusion of Theorem 18.)

By polarization, this formula defines a bilinear symmetric form on
H1. By using Young’s inequality, in the form

∣∣∣2b 〈Ah, Ch〉
∣∣∣ ≤ 2b ‖Ah‖ ‖Ch‖ ≤ b

√
a

c
‖Ah‖2 + b

√
c

a
‖Ch‖2,

one sees that the scalar products ((·, ·)) and 〈·, ·〉H1 define equivalent
norms as soon as b <

√
ac, and more precisely

(4.3) min(1, a, c)

(
1 − b√

ac

)
‖h‖2

H1 ≤ ((h, h))

≤ max(1, a, c)

(
1 +

b√
ac

)
‖h‖2

H1.

In particular, the scalar products ((·, ·)) and 〈·, ·〉H1 define equivalent
norms.

In spite of their equivalence, the scalar products ((·, ·)) and 〈·, ·〉H1

are quite different: it is possible to arrange that L is coercive with
respect to the former, although it is not with respect to the latter.
Heuristically, one may say that the “pure” terms ‖h‖2, ‖Ah‖2 and
‖Ch‖2 will mainly feel the influence of the symmetric part in L, but
that the “mixed” term 〈Ah, Ch〉 will mainly feel the influence of the
antisymmetric part in L. The following simple calculations should help
understanding this. Whenever Q is a linear operator commuting with
A (be it I, A or C in this example), one has

d

dt

∣∣∣∣
t=0

‖Qe−tA∗Ah‖2 = −2‖QAh‖2,
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but on the other hand

d

dt

∣∣∣∣
t=0

〈
Ae−tBh, Ce−tBh

〉
= −〈ABh, Ch〉 − 〈Ah, CBh〉.

Pretend that B and C commute, and this can be rewritten

−〈ABh, Ch〉 − 〈Ah, BCh〉 = −〈ABh, Ch〉 − 〈B∗Ah, Ch〉
= −〈ABh, Ch〉 + 〈BAh, Ch〉
= −〈[A, B]h, Ch〉 = −‖Ch‖2,

where the antisymmetry of B has been used to go from the first to the
second line. This will yield the dissipation in the C direction, which
the symmetric part of A was unable to provide!

4.2. Proof of Theorem 18. Introduce the norm (4.2). By Propo-
sition 15, any h ∈ K = Ker L satisfies Ah = 0, Ch = 0, in which case
((h, h′)) = 〈h, h′〉H1 = 〈h, h′〉 for all h′ ∈ H. In particular, the orthogo-
nal space K⊥ is the same for these three scalar products. So it makes

sense to choose H̃ = H1/K.
Let us compute

−1

2

d

dt

((
e−tLh, e−tLh

))
= ℜ

((
e−tLh, Le−tLh

))
;

if we can bound below this time-derivative by a constant multiple of((
e−tLh, e−tLh

))
, then the conclusion of Theorem 18 will follow by Gron-

wall’s lemma. By semigroup property, it is sufficient to consider t = 0,
so the problem is to bound below ℜ((h, Lh)) by a multiple of ((h, h)).
Obviously,

(4.4) ℜ ((h, Lh)) = ℜ 〈h, Lh〉 + a (I) + b (II) + c (III),

where

(I) := ℜ 〈Ah, ALh〉, (II) := ℜ 〈ALh, Ch〉 + ℜ 〈Ah, CLh〉,
(III) := ℜ 〈Ch, CLh〉.

By Proposition 2(i), ℜ 〈h, Lh〉 = ‖Ah‖2. For each of the terms (I), (II),
(III), the contributions of A∗A and B will be estimated separately, and
the resulting expressions will be denoted (I)A, (I)B, (II)A, (II)B, etc.
For consistency with the sequel, I shall introduce the notation

(4.5) R2 := [C, B].

Moreover, to alleviate notation, I shall temporarily assume that H is a
real Hilbert space; otherwise, just put real parts everywhere.
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First of all,

(I)B = 〈Ah, ABh〉 = 〈Ah, BAh〉 + 〈Ah, [A, B]h〉
= 0 + 〈Ah, Ch〉 ≥ −‖Ah‖‖Ch‖,

where the antisymmetry of B was used. Then,

(I)A = 〈Ah, AA∗Ah〉 =
〈
A2h, A2h

〉
+ 〈Ah, [A, A∗]Ah〉,

to be understood as∑

ij

〈AjAih, AiAjh〉 +
〈
Aih, [Ai, A

∗
j ]Ajh

〉
.

This can be rewritten
∑

ij

‖AiAjh‖2 + 〈[Aj , Ai]h, AiAjh〉 +
〈
Aih, [Ai, A

∗
j ]Ajh

〉

≡ ‖A2h‖2 +
〈
[A, A]h, A2h

〉
+ 〈Ah, [A, A∗]Ah〉.

In the present case it is assumed that [A, A] = 0, so the second term
vanishes. Then from the Cauchy–Schwarz inequality we have

(I)A ≥ ‖A2h‖2 − ‖Ah‖ ‖[A, A∗]Ah‖.
Next,

(II)B = 〈ABh, Ch〉 + 〈Ah, CBh〉
= 〈ABh, Ch〉 + 〈Ah, BCh〉 + 〈Ah, [C, B]h〉
= 〈ABh, Ch〉 − 〈BAh, Ch〉 + 〈Ah, R2h〉
= 〈[A, B]h, Ch〉 + 〈Ah, R2h〉
≥ ‖Ch‖2 − ‖Ah‖ ‖R2h‖;

(II)A = 〈Ah, CA∗Ah〉 + 〈AA∗Ah, Ch〉
= 〈Ah, A∗CAh〉 +

〈
A∗A2h, Ch

〉
+ 〈[A, A∗]Ah, Ch〉

=
〈
A2h, CAh

〉
+
〈
A2h, ACh

〉
+ 〈[A, A∗]Ah, Ch〉

= 2
〈
A2h, CAh

〉
+ 〈Ch, [A, A∗]Ah〉

≥ −2‖A2h‖‖CAh‖ − ‖Ch‖‖[A, A∗]Ah‖.
(Here the commutation of C with both A and A∗ was used.)

Finally,

(III)B = 〈Ch, CBh〉 = 〈Ch, BCh〉 + 〈Ch, [C, B]h〉
= 0 + 〈Ch, R2h〉
≥ −‖Ch‖ ‖R2h‖;
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(III)A = 〈Ch, CA∗Ah〉 = 〈Ch, A∗CAh〉 = 〈ACh, CAh〉 = ‖CAh‖2

(here again the commutation of C with A and A∗ was used).

On the whole,

ℜ ((h, Lh)) ≥ ‖Ah‖2

(4.6)

+ a
(
‖A2h‖2 − ‖Ah‖ ‖[A, A∗]Ah‖ − ‖Ah‖ ‖Ch‖

)

+ b
(
‖Ch‖2 − ‖Ah‖ ‖R2h‖ − 2‖A2h‖‖CAh‖ − ‖Ch‖‖[A, A∗]Ah‖

)

+ c
(
‖CAh‖2 − ‖Ch‖‖R2h‖

)
.

The assumptions of Theorem 18 imply

‖[A, A∗]y‖ ≤ α
(
‖y‖ + ‖Ay‖

)
,

‖R2h‖ ≤ β
(
‖Ah‖ + ‖A2h‖ + ‖Ch‖ + ‖CAh‖

)
.

Plugging this into (4.6), follows an estimate which can be conveniently
recast as

ℜ ((h, Lh)) ≥ 〈X, mX〉R4 ,

where X is a vector in R4 and m = [mij ]1≤i,j≤4 is a 4 × 4 matrix, say
upper-diagonal:

X :=
(
‖Ah‖, ‖A2h‖, ‖Ch‖, ‖CAh‖

)
,

m :=




1 − (aα + bβ) − (aα + bβ) −(a + bα + bβ + cβ) −bβ
0 a −(bα + cβ) −2b
0 0 b − cβ −cβ
0 0 0 c


 .

If the symmetric part of m is definite positive, this will imply in-
equality (4.1). Then the rest of Theorem 18 follows easily, since the
κ-coercivity of A∗A + C∗C implies

‖Ah‖2 + ‖Ch‖2 ≥ 1

2
(‖Ah‖2 + ‖Ch‖2) +

κ

2
‖h‖2

≥ min(1, κ)

2
‖h‖2

H1 .

So it all boils down now to choosing the parameters a, b and c in such
a way that the symmetric part of m is positive definite, and for this it
is sufficient to ensure that{

∀i, mii > 0;

∀(i, j), i 6= j =⇒ mij ≪ √
miimjj .
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In the sequel, the statement “the symmetric part of m1 is greater than
the symmetric part of m2” will be abbreviated into just “m1 is greater
than m2”.

Let M := max(1, α, β). Assume, to fix ideas, that

(4.7) 1 ≥ a ≥ b ≥ 2c.

Then m can be bounded below (componentwise) by



1 − 2Ma −2Ma −4Ma −Mb
0 a −2Mb −2Mb
0 0 b − Mc −Mc
0 0 0 c


 .

If now it is further assumed that

(4.8) a ≤ 1

4M
, c ≤ b

2M
,

then the latter matrix can in turn be bounded below by



1/2 −2Ma −4Ma −Mb
0 a −2Mb −2Mb
0 0 b/2 −Mc
0 0 0 c


 ≡ [m̃ij ].

By imposing

(4.9) |m̃ij| ≤
√

m̃iim̃jj/2 ≤ (m̃ii + m̃jj)/4,

it will follow
∑

ij

m̃ijXiXj ≥
∑

i

m̃iiX
2
i − 3

4

∑

i

m̃iiX
2
i =

1

4

∑
m̃iiX

2
i .

(The 3 in 3/4 is because each diagonal term should participate in the
control of three off-diagonal terms.) To ensure (4.9), it suffices that

2Ma ≤
√

a

8
, 4Ma ≤

√
b

16
, Mb ≤

√
c

8
, 2Mb ≤

√
ab

8
,

2Mb ≤
√

ac

4
, Mc ≤

√
bc

8
.

All these conditions, including (4.8), are fulfilled if

(4.10) a,
b

a
,

c

b
≤ 1

32 M2

a2

b
,

b2

ac
≤ 1

256 M2
.

Lemma A.22 in Appendix A.23 shows that it is always possible to
choose a, b, c in such a way. This concludes the proof of Theorem 18.
�
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Remark 23. There are other possible ways to conduct these cal-
culations. In an early version of this work, the last term (III)A was
rewritten in three different forms to create helpful terms in ‖AC∗h‖2

and ‖A∗Ch‖2, at the cost of requiring additional assumptions on [C, C∗].

5. Generalization

Now I shall present a variant of Theorem 18 which covers more
general situations.

Theorem 24. Let H be a Hilbert space, let A : H → Hn and
B : H → H be unbounded operators, B∗ = −B, let L := A∗A + B and
K := Ker L. Assume the existence of Nc ∈ N and (possibly unbounded)
operators C0, C1, . . . , CNc+1, R1, . . . , RNc+1 and Z1, . . . , ZNc+1 such that

C0 = A, [Cj , B] = Zj+1Cj+1+Rj+1 (0 ≤ j ≤ Nc), CNc+1 = 0,

and, for all k ∈ {0, . . . , Nc},
(i) [A, Ck] is bounded relatively to {Cj}0≤j≤k and {CjA}0≤j≤k−1;

(ii) [Ck, A
∗] is bounded relatively to I and {Cj}0≤j≤k;

(iii) Rk is bounded relatively to {Cj}0≤j≤k−1 and {CjA}0≤j≤k−1;

(iv) There are positive constants λj, Λj such that λjI ≤ Zj ≤ ΛjI.

Then there is a scalar product ((·, ·)) on H1, defining a norm equivalent
to the H1 norm,

‖h‖H1 :=

√√√√‖h‖2 +
Nc∑

k=0

‖Ckh‖2,

such that

(5.1) ∀h ∈ H1/K, ℜ ((h, Lh)) ≥ K
Nc∑

j=0

‖Cjh‖2

for some constant K > 0, only depending on the bounds appearing
implicitly in assumptions (i)–(iv).

If, in addition,
Nc∑

j=0

C∗
j Cj is κ-coercive

for some κ > 0, then there is a constant λ > 0, only depending on K
and κ, such that

∀h ∈ H1/K, ℜ ((h, Lh)) ≥ λ ((h, h)).
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In particular, L is hypocoercive in H1/K: There are constants C ≥ 0
and λ > 0, explicitly computable in terms of the bounds appearing
implicitly in assumptions (i)–(iii), and κ, such that

‖e−tL‖H1/K→H1/K ≤ Ce−λt.

This result generalizes Theorem 18 in several respects: successive
commutators are allowed, remainders Rj+1 and multiplicators Zj+1 are
allowed in the identity defining Cj+1 in terms of Cj, and the operators
C0, . . . , CNc are not assumed to commute.

Remark 25. The same rule as in Remark 21 applies to Assump-
tions (i)–(iii).

Remark 26. Theorem A.12 in Appendix A.21 will show that the
same structure assumptions (i)–(iv) imply an immediate regularization
effect H → H1. This extends the range of application of the method,
allowing data which do not necessarily lie in H1 but only in H.

Proof of Theorem 24. It is an amplification of the proof of
Theorem 18. Let

(5.2) ((h, h)) := ‖h‖2 +

Nc∑

k=0

(
ak‖Ckh‖2 + 2ℜ bk〈Ckh, Ck+1h〉

)
,

where {ak}0≤k≤Nc+1 and {bk}0≤k≤Nc are families of positive coefficients,
satisfying

(5.3) 0 ≤ k ≤ Nc =⇒





a0 ≤ δ, bk ≤ δ ak, ak+1 ≤ δ bk,

a2
k ≤ δ bk−1bk (1 ≤ k ≤ Nc),

b2
k ≤ δ akak+1 (0 ≤ k ≤ Nc).

The small number δ > 0 will be chosen later on, and the existence of
the coefficients ak, bk is guaranteed by Lemma A.22 again.

Since CNc+1 = 0, the last term in (5.2), with coefficient bNc , does
not play any role. For k ≤ Nc−1, the inequality bk ≤ δ

√
akak+1 implies

bk

∣∣∣〈Ckh, Ck+1h〉
∣∣∣ ≤ δak

2
‖Ckh‖2 +

δak+1

2
‖Ck+1h‖2.

Hence, for δ small enough,

((h, h)) ≥ ‖h‖2 +
1

2

Nc∑

k=0

ak‖Ckh‖2,

so the norm defined by (5.2) is indeed equivalent to the H1 norm.
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The next observation is that the space K⊥ is the same, whether the
orthogonality is defined with respect to the scalar product in H, the
one in H1 or the one defined by (5.2). To show this it is sufficient to
prove

(5.4) h ∈ Ker L =⇒ ∀k ∈ {0, . . . , Nc + 1}, Ckh = 0.

This will be achieved by finite induction on k. Let h ∈ Ker L; by
Lemma 2, Ah = 0, Bh = 0; so (5.4) is true for k = 0. Assume
now that Cjh = 0 for j ≤ k; it is obvious that also CjAh = 0 for
j ≤ k; then our assumption on Rk+1 implies that Rk+1h = 0. So
Ck+1h = CkBh−BCkh−Rk+1h = 0. This concludes the proof of (5.4).

To prove (5.1) it is obviously sufficient to establish

(5.5) ℜ ((h, Lh)) ≥ 1

2
‖Ah‖2 +

Nc∑

k=0

(ak

2
‖CkAh‖2 +

bk

2
‖Ck+1h‖2

)
.

As in the proof of Theorem 18 one can compute, with obvious
notation,

(5.6) ℜ ((h, Lh)) = ‖Ah‖2 +
Nc∑

k=0

{
ak[(I)

k
A + (I)k

B] + 2bk[(II)
k
A + (II)k

B]
}
.

To alleviate the notation, assume for a moment that we are working
in a real Hilbert space, so there is no need to take real parts (otherwise,
just put real parts everywhere). Explicit computations yield, for any
k ≤ Nc,

(I)k
B = 〈Ckh, CkBh〉 = 〈Ckh, [Ck, B]h〉 + 〈Ckh, BCkh〉

= 〈Ckh, [Ck, B]h〉 + 0

= 〈Ckh, Zk+1Ck+1h〉 + 〈Ckh, Rk+1h〉 + 0

≥ −Λk+1‖Ckh‖ ‖Ck+1h‖ − ‖Ckh‖ ‖Rk+1h‖

(I)k
A = 〈Ckh, CkA

∗Ah〉
= 〈Ckh, A∗CkAh〉 + 〈Ckh, [Ck, A

∗]Ah〉
= 〈ACkh, CkAh〉 + 〈Ckh, [Ck, A

∗]Ah〉
= 〈CkAh, CkAh〉 + 〈[A, Ck]h, CkAh〉 + 〈Ckh, [Ck, A

∗]Ah〉
≥ ‖CkAh‖2 − ‖CkAh‖ ‖[A, Ck]h‖ − ‖Ckh‖ ‖[Ck, A

∗]Ah‖
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and, for k ≤ Nc − 1 (when k = Nc, (II)k
B = 0),

(II)k
B = 〈CkBh, Ck+1h〉 + 〈Ckh, Ck+1Bh〉

= 〈CkBh, Ck+1h〉 + 〈Ckh, BCk+1h〉 + 〈Ckh, [Ck+1, B]h〉
= 〈CkBh, Ck+1h〉 − 〈Ckh, BCk+1h〉 + 〈Ckh, [Ck+1, B]h〉
= 〈[Ck, B]h, Ck+1h〉 + 〈Ckh, [Ck+1, B]h〉
= 〈CkBh, Ck+1h〉 − 〈BCkh, Ck+1h〉 + 〈Ckh, Zk+2Ck+2h〉

+ 〈Ckh, Rk+2h〉
= 〈[Ck, B]h, Ck+1h〉 + 〈Ckh, Zk+2Ck+2h〉 + 〈Ckh, Rk+2h〉
= 〈Zk+1Ck+1h, Ck+1h〉 + 〈Rk+1h, Ck+1h〉 + 〈Ckh, Zk+2Ck+2h〉

+ 〈Ckh, Rk+2h〉
≥ λk+1‖Ck+1h‖2 − ‖Ck+1h‖ ‖Rk+1h‖ − Λk+2‖Ckh‖ ‖Ck+2h‖

− ‖Ckh‖ ‖Rk+2h‖

(II)k
A = 〈Ckh, Ck+1A

∗Ah〉 + 〈CkA
∗Ah, Ck+1h〉

= 〈Ckh, [Ck+1, A
∗]Ah〉 + 〈Ckh, A∗Ck+1Ah〉 + 〈A∗CkAh, Ck+1h〉

+ 〈[Ck, A
∗]Ah, Ck+1h〉

= 〈Ckh, [Ck+1, A
∗]Ah〉 + 〈ACkh, Ck+1Ah〉 + 〈CkAh, ACk+1h〉

+ 〈[Ck, A
∗]Ah, Ck+1h〉

= 〈Ckh, [Ck+1, A
∗]Ah〉 + 〈CkAh, Ck+1Ah〉 + 〈[A, Ck]h, Ck+1Ah〉

+ 〈CkAh, Ck+1Ah〉 + 〈CkAh, [A, Ck+1]h〉 + 〈[Ck, A
∗]Ah, Ck+1h〉

≥ −‖Ckh‖ ‖[Ck+1, A
∗]Ah‖ − ‖CkAh‖ ‖Ck+1Ah‖

− ‖Ck+1Ah‖ ‖[A, Ck]h‖ − ‖CkAh‖ ‖Ck+1Ah‖
− ‖CkAh‖ ‖[A, Ck+1]h‖ − ‖Ck+1h‖ ‖[Ck, A

∗]Ah‖.

The next step is to use the quantities aj‖CjAh‖2 and bj‖Cj+1h‖2

to control all the remaining terms. For this I shall apply Young’s
inequality, in the form XY ≤ εX2 + C(ε)Y 2 (C(ε) = ε−1/4). In the
computations below, the dependence of C on the constants Λj will not
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be recalled.

ak[(I)
k
A + (I)k

B] + bk[(II)
k
A + (II)k

B] ≥ ak‖CkAh‖2 + bkλk+1‖Ck+1h‖2

(5.7)

− εbk−1‖Ckh‖2 − C
a2

k

bk−1
‖Ck+1h‖2(5.8)

− εbk−1‖Ckh‖2 − C
a2

k

bk−1
‖Rk+1h‖2(5.9)

− εak‖CkAh‖2 − Cak‖[A, Ck]h‖2(5.10)

− εbk−1‖Ckh‖2 − C
a2

k

bk−1
‖[Ck, A

∗]Ah‖2(5.11)

− εbk‖Ck+1h‖2 − Cbk‖Rk+1h‖2(5.12)

− εbk−1‖Ckh‖2 − C
b2
k

bk−1
‖Ck+2h‖2(5.13)

− εbk−1‖Ckh‖2 − C
b2
k

bk−1
‖Rk+2h‖2(5.14)

− εbk−1‖Ckh‖2 − C
b2
k

bk−1
‖[Ck+1, A

∗]Ah‖2(5.15)

− εak‖CkAh‖2 − C
b2
k

ak
‖Ck+1Ah‖2(5.16)

− εak+1‖Ck+1Ah‖2 − C
b2
k

ak+1
‖[A, Ck]h‖2(5.17)

− εak‖CkAh‖2 − C
b2
k

ak
‖Ck+1Ah‖2(5.18)

− εak‖CkAh‖2 − C
b2
k

ak
‖[A, Ck+1]h‖2(5.19)

− εbk‖Ck+1h‖2 − C
b2
k

ak
‖[Ck, A

∗]Ah‖2,(5.20)

with the understanding that (5.12) to (5.20) in the above are not
present when k = Nc. The problem is to show that each of the terms
appearing in lines (5.8) to (5.20) can be bounded below by

(5.21) −ε
(
‖Ah‖2 +

∑

j

(aj‖CjAh‖2 + bj‖Cj+1h‖2)
)
,

as soon as δ is small enough. This is true, by construction, of all the
terms appearing on the left in these lines; so let us see how to control
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all the terms on the right. In the sequel, the notation u ≪ v means
u ≤ η v, where η > 0 becomes arbitrarily small as δ → 0.

- For lines (5.8), (5.13), (5.16) and (5.18), it is sufficient to impose

a2
k

bk−1
≪ bk,

b2
k

bk−1
≪ bk+1,

b2
k

ak
≪ ak+1.

The first and the third of these inequalities are true by construction;
as for the second one, it follows from

b2
k ≪ akak+1 ≪

√
bk−1bk

√
bkbk+1 =⇒ b2

k ≪ bk−1bk+1.

- For lines (5.9), (5.12) and (5.14), we know that ‖Rk+1h‖ is con-
trolled by a combination of ‖Ah‖, ‖A2h‖, ‖C1h‖, ‖C1Ah‖, . . . , ‖Ckh‖,
‖CkAh‖; hence it is sufficient to bound the coefficients appearing in
front of Rk+1h (resp. Rk+2h) by a small multiple of ak (resp. ak+1). So
these terms are fine as soon as

a2
k

bk−1
≪ ak, bk ≪ ak,

b2
k

bk−1
≪ ak+1.

The second of these inequalities is true by construction, while the first
and third one follow from

a2
k ≪ bk−1bk ≪ bk−1ak, b2

k ≪ bk−1bk+1 ≪ bk−1ak+1.

- For lines (5.10), (5.17) and (5.19), we know that ‖[A, Ck]h‖ is con-
trolled by ‖Ah‖, ‖A2h‖, ‖C1h‖, ‖C1Ah‖, . . . , ‖Ckh‖. By a reasoning
similar to the one above, it is sufficient to ensure

ak ≪ bk−1,
b2
k

ak+1
≪ bk−1,

b2
k

ak
≪ bk.

The first and third of these inequalities are true by construction, while
the second one follows from

b2
k ≪ akak+1 ≪ bk−1ak+1.

- For lines (5.11), (5.15) and (5.20), we know that ‖[Ck, A
∗]y‖ is

controlled by ‖y‖, ‖Ay‖, ‖C1y‖, . . . , ‖Cky‖, so ‖[Ck, A
∗]Ah‖ is con-

trolled by ‖Ah‖, ‖A2h‖, ‖C1Ah‖, . . . , ‖CkAh‖. By a reasoning similar
to the one above, it is sufficient to ensure

a2
k

bk−1
≪ ak,

b2
k

bk−1
≪ ak+1,

b2
k

ak
≪ ak.
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The first and third of these inequalities are true by construction, while
the second one follows from

b2
k ≪ akak+1 ≪ bk−1ak+1.

Putting all together, for all η there is a δ such that each of the
“error terms” which appeared in the estimates above can be bounded
below by (5.21). Then, if Ne stands for the number of error terms,

ℜ ((h, Lh)) ≥
(
1 − Neε

)
(
‖Ah‖2 +

Nc∑

k=0

(ak

2
‖CkAh‖2 +

bk

2
‖Ck+1h‖2

))
,

which implies (5.5) for δ small enough. The proof of (5.1) is now
complete, and the end of Theorem 24 follows easily, as in the proof of
Theorem 18. �

I shall conclude this section with a simple generalization of Theo-
rem 24:

Theorem 27. With the same notation as in Theorem 24, define
Cj+1/2 = CjA. Then the conclusion of Theorem 24 still holds true if
Assumptions (i) to (iii) are relaxed as follows: There exists a constant
M such that

(i’) ‖[A, Ck]h‖ ≤ M
∑

‖Cαh‖θ ‖Cβh‖1−θ, where the sum is over
all pairs of indices (α, β) such that θα + (1 − θ)β ≤ k + 1/2, (α, β) 6=
(k + 1/2, k + 1/2);

(ii’) ‖[Ck, A
∗]Ah‖ ≤ M

∑
‖Cαh‖θ ‖Cβh‖1−θ, where the sum is

over all pairs of indices (α, β) such that θα+(1−θ)β ≤ k+1, (α, β) 6=
(k + 1, k + 1);

(iii’) ‖Rkh‖ ≤ M
∑ ‖Cαh‖θ ‖Cβh‖1−θ, where the sum is over all

pairs of indices (α, β) such that θα + (1 − θ)β ≤ k, (α, β) 6= (k, k).

In statements (i’) to (iii’), θ may vary from one pair (α, β) to the
other. The conditions on admissible pairs (α, β) can be understood
more easily if one remembers Remark 21; then the weight w(Cα) is
2α + 1. If one formally attributes to [A, Ck], [A∗, Ck]A and Rk the
weights 2k+2, 2k+3 and 2k+1, and decides that the weight of a formal
product ‖O1h‖θ ‖O2h‖1−θ is θw(O1) + (1 − θ)w(O2), then Conditions
(i’) to (iii’) mean that each of the operators [A, Ck], [A∗, Ck]A and Rk

can be bounded in terms of lower weights. For instance, an estimate
like

‖R5h‖ ≤ M
√

‖C3h‖ ‖C5h‖
is admissible, since [w(C3) + w(C5)]/2 = (7 + 11)/2 < 11 = w(R5).
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Proof of Theorem 27. The strategy is the same as in Theo-
rem 24; but now one should use Young’s inequality in the form

aθb1−θ ≤ εa + C b,

and note that, if (um) is given by Lemma A.22, then
[
ℓ ≤ m + n

2
, (m, n) 6= (ℓ, ℓ)

]
=⇒ uℓ ≪

√
um un.

Then all the estimates entering the proof of Theorem 24 can be adapted
without difficulty. �

6. Hypocoercivity in entropic sense

In this section I shall consider the problem of convergence to equi-
librium for solutions of diffusion equations in an L log L setting. This
represents a significant extension of the results already discussed, be-
cause in many cases of interest, after a finite time the solution auto-
matically belongs to L log L(µ), where µ is the stationary solution, but
not to L2(µ).2

For that purpose, I shall use the same information-theoretical func-
tionals as in the theory of logarithmic Sobolev inequalities: first, the
Kullback information (or Boltzmann H functional, or Shannon in-
formation),

Hµ(ν) =

∫
h log h dµ, ν = hµ;

and secondly, the Fisher information

Iµ(ν) =

∫ |∇h|2
h

dµ, ν = hµ.

Recall that a probability measure µ on RN satisfies a logarithmic Sobolev
inequality if there is a constant λ > 0 such that

Hµ(ν) ≤ 1

2λ
Iµ(ν),

for all probability measures ν on RN (with the convention that Hµ(ν) =
Iν(µ) = +∞ if ν is not absolutely continuous with respect to µ).

As a main difference with respect to the classical theory, I shall
distort the Fisher information by using a suitable field of quadratic
forms; that is, replace

∫
|∇h|2/h dµ by

∫
〈S∇h,∇h〉/h dµ, where x →

2Of course this does not contradict the fact that it will be locally C∞. The
most basic illustration is the case of the linear Fokker–Planck equation ∂th =
∆vh − v · ∇vh: Hypercontractivity theory tells us that the semigroup at time t
is regularizing from Lp to Lq if and only if t ≥ log((q−1)/(p−1))/2, which is finite
only if p > 1.
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S(x) is a nonnegative matrix-valued function such that S(x) ≥ κIN for
some κ > 0, independently of x. It turns out that the same algebraic
tricks which worked in a Hilbertian context will also work here, at the
price of more stringent assumptions on the vector fields: The proofs
will be based on some slightly miraculous-looking computations, which
may be an indication that there is more structure to understand.

Theorem 28 below is the main result of this section. Note carefully
that it is not expressed in terms of linear operators in abstract Hilbert
spaces, but in terms of derivation operators on RN . (The theorem
might possibly be generalized by replacing RN by a smooth manifold.)
So as not to be bothered with regularity issues, I shall assume here that
the reference density is rapidly decaying and that all coefficients are C∞

and have at most polynomial growth; but of course these assumptions
can be relaxed. I shall also assume that the solution is smooth if the
initial datum is smooth.

Theorem 28. Let E ∈ C2(RN), such that e−E is rapidly decreas-
ing, and µ(dX) = e−E(X) dX is a probability measure on RN . Let
(Aj)1≤j≤m and B be first-order derivation operators with smooth coeffi-
cients. Denote by A∗

j and B∗ their respective adjoints in L2(µ), and as-
sume that B∗ = −B. Denote by A the collection (A1, . . . , Am), viewed
as an unbounded operator whose range is made of functions valued in
Rm. Define

L = A∗A + B =
m∑

j=1

A∗
jAj + B,

and assume that e−tL defines a well-behaved semigroup on a suitable
space of positive functions (for instance, e−tLh and log(e−tLh) are C∞

and all their derivatives grow at most polynomially if h is itself C∞ with
all derivatives bounded, and h is bounded below by a positive constant).

Next assume the existence of an integer Nc ≥ 1, first-order deriva-
tion operators C0, . . . , CNc+1, R1, . . . , RNc+1; and vector-valued func-
tions Z1, . . . , ZNc+1 (all of them with C∞ coefficients, growing at most
polynomially, as their partial derivatives) such that

C0 = A, [Cj , B] = Zj+1 Cj+1+Rj+1 (0 ≤ j ≤ Nc), CNc+1 = 0,

and
(i) [A, Ck] is pointwise bounded relatively to A;
(ii) [Ck, A

∗] is pointwise bounded relatively to I, {Cj}0≤j≤k;
(iii) Rk is pointwise bounded with respect to {Cj}0≤j≤k−1;
(iv) there are positive constants λj , Λj such that λj ≤ Zj ≤ Λj;
(v) [A, Ck]

∗ is pointwise bounded relatively to I, A.
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Then there is a function x → S(x), valued in the space of nonnegative
symmetric N×N matrices, uniformly bounded, such that if one defines

E(h) :=

∫
h log h dµ +

∫ 〈S∇h,∇h〉
h

dµ,

one has the estimate

d

dt
E(e−tLh) ≤ −α

∫ 〈S∇h,∇h〉
h

dµ,

for some positive constant α > 0, which is explicitly computable in
terms of the bounds appearing implicitly in conditions (i)–(v).

If furthermore

(a) there is a positive constant λ such that
∑

k C∗
kCk ≥ λIN , point-

wise on RN ;

(b) µ satisfies a logarithmic Sobolev inequality with constant K;

then S(x) is uniformly positive definite, and there is a constant κ > 0
such that

d

dt
E(e−tLh) ≤ −κ E(e−tLh).

In particular,

Iµ((e
−tLh µ) = O(e−κt), Hµ((e

−tLh µ) = O(e−κt),

and all the constants in this estimate can be estimated explicitly in
terms of the bounds appearing implicitly in conditions (i)–(v), and the
constants λ, K.

Remark 29. The matrices S(x) will be constructed from the vec-
tor fields entering the equation, by linear combinations with constant
coefficients. For more degenerate situations, it may be useful to use
varying coefficients.

Remark 30. A major difference between the assumptions of The-
orem 24 and the assumptions of Theorem 28 is that the latter impose
pointwise bounds on RN , in the following sense. First, A is an m-tuple
of derivation operators (Ai)1≤i≤m, each of which can be identified with
a vector field σi, in such a way that Aif = σi · ∇f ; so σ = (σi)1≤i≤m

can be seen as a map valued in (m×N) matrices. Then each commu-
tator Ck is also an m-tuple of derivation operators (Ck,j)1≤j≤m, so that
Ck,j has been obtained from the commutation of Ck−1,j with B. Then
[Ai, Ck,j] is represented by a vector field ξi,j,k; and Assumption (i) says
that |ξi,j,k(x)| is bounded, for all x, by c‖σ(x)‖, where c is a constant.
The other pointwise conditions are to be interpreted similarly. Let us
consider for instance Assumption (ii). Since Ai is a derivation, the
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adjoint of Ai takes the form −Ai + ai, where ai is a function; so the
adjoint of A is of the form (g1, . . . , gm) → −∑Aigi +

∑
aigi. Then

the commutator of C with A∗ is the same as the commutator of C
with A, up to an array of operators which are the multiplication by the
functions Cjai. So Assumption (ii) really says that the functions Cjai

are all bounded. Finally, note that in Assumption (a), each Ck is an
m-tuple of derivations, so it can be identified to a function valued in
m×N matrices; and

∑
C∗

kCk to a function valued in N ×N matrices,
which should be uniformly positive definite.

Remark 31. Theorem A.18 in Appendix A.21 will show that the
Assumptions of Theorem 28 entail an immediate “entropic” regulariza-
tion effect: If the initial datum is only assumed to have finite entropy,
then the functional E becomes immediately finite. This allows to ex-
tend the range of application of the method to initial data with very
little regularity. In the case of the Fokker–Planck equation I shall show
later how to relax even this assumption of finite entropy.

The key to the proof of Theorem 28 is the following lemma, which
says that the computations arising in the time-differentiation of the
functional E are quite the same as the computations arising in Theo-
rem 24, provided that A and Ck commute.

In the next statement, I shall use the notation
(

d

dt

)

S

F(h)

for the time-derivative of the functional F along the semigroup gener-
ated by the linear operator −S. More explicitly,

(
d

dt

)

S

F(h) =
d

dt

∣∣∣∣
t=0

F(e−tSh).

Moreover, when no measure is indicated this means that the Lebesgue
measure should be used.

Lemma 32. Let µ(dX) = e−E(X) dX, A = (A1, . . . , Am), B and
L = A∗A + B be as in Theorem 28. Let C = (C1, . . . , Cm) and C ′ =
(C ′

1, . . . , C
′
m) be m-tuples of derivation operators on RN (all of them

with smooth coefficients whose derivatives grow at most polynomially).
Then, with the notation f = he−E, u = log h, one has

(6.1)

(
d

dt

)

B

∫
h log h dµ = 0;
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(6.2) −
(

d

dt

)

A∗A

∫
h log h dµ =

∫ |Ah|2
h

dµ =

∫
f |Au|2,

where by convention |Au|2 =
∑

i(Aiu)2;

−
(

d

dt

)

B

∫ 〈Ch, C ′h〉
h

dµ =

∫ 〈Ch, [C ′, B]h〉
h

dµ +

∫ 〈[C, B]h, C ′h〉
h

dµ

(6.3)

=

∫
f
〈
Cu, [C ′, B]u

〉
+

∫
f
〈
[C, B]u, C ′u

〉
,(6.4)

where by convention 〈[C, B]u, C ′u〉 =
∑

j([Cj, B]u)(C ′
ju);

−
(

d

dt

)

A∗A

∫ 〈Ch, C ′h〉
h

dµ = 2

∫
f〈CAu, C ′Au〉

(6.5)

+

(∫
f 〈[C, A∗]Au, C ′u〉 +

∫
f 〈Cu, [C ′, A∗]Au〉

)

+

(∫
f
〈
CAu, [A, C ′]u

〉
+

∫
f
〈
[A, C]u, C ′Au

〉)

+

∫
f QA,C,C′(u),

where by convention 〈Cu, [C ′, A∗]Au〉 =
∑

ij(Cju)([C ′
j, A

∗
i ]Aiu), etc.

and

(6.6) QA,C,C′(u) := [A, C]∗(Au ⊗ C ′u) + [A, C ′]∗(Au ⊗ Cu)

:=
∑

ij

[Ai, Cj]
∗(Aiu C ′

ju) + [Ai, C
′
j]
∗(Aiu Cju).

Remark 33. If [Ai, Cj] = [Ai, C
′
j] = 0 for all i, j, then obviously

QA,C,C′ vanishes identically. The same conclusion holds true if A = C =
C ′, even if [Ai, Aj ] is not necessarily 0. Indeed, [Aj, Ai]

∗(Aju Aiu) =
−[Ai, Aj ]

∗(Aiu Aju), so
∑

ij[Ai, Aj]
∗(Aiu Aju) = 0 by the symmetry

i ↔ j. I don’t know whether there are simple general conditions for the
vanishing of QA,C,C′, that would encompass both [A, C ′] = [A, C] = 0
and A = C = C ′ as particular cases.

Remark 34. One of the conclusions of this lemma is that the time-
derivatives of the quantities

∫
h log h dµ and

∫
〈Ch, C ′h〉/h dµ can be

computed just as the time-derivatives of the quantities
∫

h2 dµ and
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∫
〈Ch, C ′h〉 dµ, if one replaces in the final result the measure µ by

f = h µ, and in the integrand the function h by its logarithm, as long
as the quantity QA,C,C′ vanishes. In the special case when C = C ′ =
A, this principle is well-known in the theory of logarithmic Sobolev
inequalities, where it is stated in terms of Bakry and Émery’s “Γ2

calculus”. As in the theory of Γ2 calculus, Ricci curvature should play
a crucial role here, since it is related to the commutator [A, A∗]. (In
a context of Riemannian geometry, this is what Bochner’s formula is
about.)

Proof of Lemma 32. The proofs of (6.1) and (6.2) are easy and
well-known, however I shall recall them for completeness. The proof
of (6.3) will not cause any difficulty. But the proof of (6.5) will be
surprisingly complicated and indirect, which might be a indication that
a more appropriate formalism is still to be found.

As before, I shall assume that the function h is very smooth, and
that all the integrations by parts or other manipulations needed in the
proof are well justified. To alleviate notation, I shall abbreviate e−tLh
into just h, the time dependence being implicit. Also f = he−E and
u = log h = log f + E will depend implicitly on the time t. Recall that
the Lebesgue measure is used if no integration measure is specified.

By the chain-rule,

−
(

d

dt

)

B

∫
h log h dµ =

∫
(log h + 1) (Bh) dµ =

∫
B(h log h) dµ

=

∫
(B∗1)(h log h) dµ,

and this quantity vanishes since B∗ = −B is a derivation. This
proves (6.1).

Next,

−
(

d

dt

)

A∗A

∫
h log h dµ =

∫
(log h + 1) (A∗Ah) dµ

=

∫
〈A(log h + 1), Ah〉 dµ =

∫ 〈Ah

h
, Ah

〉
dµ.

This proves (6.2).
To prove (6.3), it suffices to remark that (a) the integrand can be

written as a quadratic expression of
√

h since, by chain rule,
∫ 〈Ch, C ′h〉

h
dµ = 4

∫
〈C

√
h, C ′

√
h〉 dµ;
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and that (b) the evolution equation for
√

h along B is the same as for

h: indeed, ∂th + Bh = 0 implies ∂t

√
h + B

√
h = 0. So to compute the

time-derivative in (6.3) it all reduces to a quadratic expression:
∫
〈CB

√
h, C ′

√
h〉 dµ =

∫
〈BC

√
h, C ′

√
h〉 dµ+

∫
〈[C, B]

√
h, C ′

√
h〉 dµ.

Then the first term in the right-hand side vanishes since B is antisym-
metric. Formula (6.3) follows upon use of the chain-rule again.

Now it only remains to establish (6.5). Before starting the compu-
tations, let us recast the equation ∂th+A∗Ah = 0 in terms of f = he−E .
It follows by Proposition 5, with ρ∞ = e−E and B = 0, that

∂tf = ∇ · (D(∇f + f ∇E)) = ∇ · (Df∇u),

with the diffusion matrix D = A∗A, or more rigorously σ∗σ, where σ
is such that Ah = σ(∇h). In particular, if v and w are two smooth
functions, then

(6.7) 〈D∇v, ∇w〉 = 〈Av, Aw〉.
Another relation will be useful later: by explicit computation, if g is a
vector-valued smooth function, then

A∗g = ∇ · (σ∗g) − 〈σ∇E, g〉;
it follows that, for any real-valued smooth function u,

(6.8) ∇ · (D∇u) − 〈D∇E, ∇u〉 = A∗Au.

Next, by chain-rule,
∫ 〈Ch, C ′h〉

h
dµ =

∫
f 〈Cu, C ′u〉.

So the left-hand side of (6.5) is equal to

(6.9) −
∫

∇ · (f D∇u) 〈Cu, C ′u〉 −
∫

f
〈
C

(∇ · (Df∇u)

f

)
, C ′u

〉

−
∫

f
〈
Cu, C ′

(∇ · (Df∇u)

f

)〉
.

The three terms appearing in the right-hand side of (6.9) will be
considered separately. First, by integration by parts and (6.7),

−
∫

∇ · (fD∇u) 〈Cu, C ′u〉 =

∫
f
〈
D∇u, ∇〈Cu, C ′u〉Rm

〉

RN
(6.10)

=

∫
f
〈
Au, A〈Cu, C ′u〉

〉
.(6.11)
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For the second term in (6.9), we use the identity

∇·(Df∇u) = f∇·(D∇u)+〈D∇u, ∇f〉 = f∇·(D∇u)+f〈D∇u, ∇ log f〉.

So

−
∫

f
〈
C

(∇ · (Df∇u)

f

)
, C ′u

〉
= −

∫
f
〈
C∇ · (D∇u), C ′u

〉

−
∫

f
〈
C〈D∇u, ∇ log f〉RN , C ′u

〉
Rm

= −
∫

f
〈
C∇ · (D∇u), C ′u

〉
−
∫

f
〈
C〈D∇u, ∇u〉RN , C ′u

〉
Rm

+

∫
f
〈
C〈D∇u, ∇E〉RN , C ′u

〉

Rm
.

By combining the first and third integrals in the expression above, then
using (6.8) and (6.7) again, we find that

−
∫

f
〈
C

(∇ · (Df∇u)

f

)
, C ′u

〉

= −
∫

f
〈
C
(
∇ · (D∇u) − 〈D∇E, ∇u〉RN

)
, C ′u

〉

Rm
(6.12)

−
∫

f
〈
C〈D∇u,∇u〉RN , C ′u

〉

Rm

=

∫
f 〈CA∗Au, C ′u〉 −

∫
f 〈C|Au|2, C ′u〉

=

∫
f 〈[C, A∗]Au, C ′u〉 +

∫
f 〈A∗CAu, C ′u〉(6.13)

− 2

∫
f 〈(CAu) · (Au), C ′u〉.

(In the last term, the dot is just here to indicate the evaluation of the
matrix CAu on the vector Au. Also 〈A∗CAu, C ′u〉 should be under-
stood as

∑
ij〈A∗

i CjAiu, C ′
ju〉.)
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Now the second integral in (6.13) needs some rewriting. By using
the chain rule as before, and the definition of the adjoint,

∫
f 〈A∗CAu, C ′u〉 =

∫
〈A∗CAu, hC ′ log h〉 dµ

(6.14)

=

∫
〈A∗CAu, C ′h〉 dµ

=

∫
〈CAu, AC ′h〉 dµ

=

∫
〈CAu, [A, C ′]h〉 dµ +

∫
〈CAu, C ′Ah〉 dµ.(6.15)

The first term in (6.15) can be rewritten as

(6.16)

∫
〈CAu, [A, C ′]u〉 h dµ =

∫
f 〈CAu, [A, C ′]u〉.

As for the second term in (6.15), since C ′ is a derivation, it can be
recast as
∫
〈CAu, C ′(hAu)〉 dµ =

∫
〈CAu, hC ′Au〉 dµ +

∫
〈CAu, (C ′h) ⊗ Au〉 dµ

=

∫
f 〈CAu, C ′Au〉 +

∫
f 〈(CAu) · (Au), C ′u〉.(6.17)

Note that there is a partial simplification with the last term of (6.13)
(only partial since the coefficients are not the same).

Of course, the expressions which we obtained for the second term
in (6.9) also hold for the third term, up to the exchange of C and C ′.
After gathering all these results, we find

−
(

d

dt

)

A∗A

∫
f〈Cu, C ′u〉 =

∫
f
〈
Au, A〈Cu, C ′u〉

〉
(6.18)

+

(∫
f 〈[C, A∗]Au, C ′u〉 +

∫
f 〈Cu, [C ′, A∗]Au〉

)
(6.19)

+

(∫
f 〈CAu, [A, C ′]u〉 +

∫
f 〈[A, C]u, C ′Au〉

)
(6.20)

+ 2

∫
f〈CAu, C ′Au〉(6.21)

−
(∫

f 〈(CAu) · Au, C ′u〉 +

∫
f 〈(C ′Au) · Cu, Au〉

)
.(6.22)
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The terms appearing in (6.19), (6.20) and (6.21) coincide with some
of the ones which appear in (6.5), so it only remains to check that the
ones in (6.18) and (6.22) add up to (6.6). By using the identity

A〈Cu, C ′u〉 = (ACu) · (C ′u) + (AC ′u) · (Cu),

we see that the sum of (6.18) and (6.22) can be recast as
∫

f
〈
Au, 〈(AC − CA)u, C ′u〉

〉
+

∫
f
〈
Au, 〈(AC ′ − C ′A)u, Cu〉

〉

=

∫
f
〈
Au, 〈[A, C]u, C ′u〉

〉
+

∫
f
〈
Au, 〈[A, C ′]u, Cu〉

〉
;

or, more explicitly:

(6.23)
∑

ij

∫
f (Aiu)([Ai, Cj]u)(C ′

ju)+
∑

ij

∫
f (Aiu)([Ai, C

′
j]u)(Cju).

It remains to check that (6.23) can be transformed into (6.6). Consider
for instance the first term in (6.23), for some index (i, j). Since [Ai, Cj]
is a derivation,

∫
f (Aiu)([Ai, Cj]u)(C ′

ju) =

∫
(Aiu)([Ai, Cj]h)(C ′

ju) dµ

=

∫
h[Ai, Cj]

∗(Aiu C ′
ju) dµ

=

∫
f [Ai, Cj]

∗(Aiu C ′
ju).

This concludes the proof of Lemma 32. �

Proof of Theorem 28. Here I shall use the same conventions
as in the proof of Lemma 32. The functional E will be searched for in
the form

E(h) =

∫
fu +

Nc∑

k=0

(
ak

∫
f |Cku|2 + 2bk

∫
f〈Cku, Ck+1u〉

)
.

In other words, the quadratic form S in the statement will be looked
for in the form

〈S(x)ξ, ξ〉m =
∑

ak

∣∣Ck(x)ξ
∣∣2
Rm + 2

∑
bk

〈
Ck(x)ξ, Ck+1(x)ξ

〉

Rm
,

where Ck is identified with a function valued in m × N matrices.
If the inequalities (5.3) are enforced, then for δ small enough

〈S(x)ξ, ξ〉m ≥ K
∑

|Ck(x)ξ|2m;

then S will be a nonnegative symmetric matrix, as desired.
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Next, we consider the evolution of E along the semigroup. As re-
called in Lemma 32,

− d

dt

∫
h log h dµ = +

∫ |Ah|2
h

dµ.

Next,




− d

dt

∫ |Ckh|2
h

dµ = 2
(
(I)k

A + (I)k
B

)
,

− d

dt

∫ 〈Ckh, Ck+1h〉
h

dµ = (II)k
A + (II)k

B,

where the subscript A indicates the contribution of the A∗A operator,
and the subscript B indicates the contribution of the B operator. The
goal is to show that these terms can be handled in exactly the same
way as in Theorem 24: Everything can be controlled in terms of the
quantities

(6.24)

∫
f |CkAu|2 and

∫
f |Cku|2 =

∫ |Ckh|2
h

dµ.

(These integrals play the role that the quantities ‖CkAh‖2 and ‖Ckh‖2

were playing in the proof of Theorem 24.)

The terms (I)k
B and (II)k

B are most easily dealt with. By Lemma 32,
we just have to reproduce the result of the computations in the proof
of Theorem 24 and divide the integrand by h. So in place of

∫
〈Ckh, Zk+1Ck+1h〉 dµ +

∫
〈Ckh, Rk+1h〉 dµ,

we have

(I)k
B =

∫ 〈Ckh, Zk+1Ck+1h〉
h

dµ +

∫ 〈Ckh, Rk+1h〉
h

dµ.

Then we proceed just as in the proof of Theorem 24: By Cauchy–
Schwarz inequality (applied here for vector-valued functions),

(I)k
B ≥ −Λk

√∫ |Ckh|2
h

dµ

√∫ |Ck+1h|2
h

dµ

−
√∫ |Ckh|2

h
dµ

√∫ |Rk+1h|2
h

dµ.

Then |Rk+1h| can be bounded pointwise in terms of |Ah|, . . . , |Ckh|, so∫
|Rk+1h|2/h dµ can be controlled in terms of

∫
|Cjh|2/h dµ for j ≤ k.
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The treatment of (II)k
B is similar:

(II)k
B =

∫ 〈Zk+1Ck+1h, Ck+1h〉
h

dµ +

∫ 〈Rk+1h, Ck+1h〉
h

dµ

+

∫ 〈Ckh, Zk+2Ck+2h〉
h

dµ +

∫ 〈Ckh, Rk+2h〉
h

dµ

≥ λk+1

∫ |Ck+1h|2
h

dµ −
√∫ |Rk+1h|2

h
dµ

√∫ |Ck+1h|2
h

dµ

−Λk+2

√∫ |Ckh|2
h

dµ

√∫ |Ck+2h|2
h

dµ−
√∫ |Ckh|2

h
dµ

√∫ |Rk+2h|2
h

dµ.

Then once again, one can control the functions |Rk+2h| by |Cjh| for
j ≤ k + 1.

Now consider the terms coming from the action of A∗A. Let us first
pretend that the extra terms QA,C,C′ in (6.5) do not exist. Then by
Lemma 32 again,

(I)k
A =

∫
f |CkAu|2 +

∫
f〈[Ck, A

∗]Au, Cku〉 +

∫
f〈CkAu, [A, Ck]u〉.

By Cauchy–Schwarz inequality (for vector-valued functions),

(I)k
A ≥

∫
f |CkAu|2 −

√∫
f
∣∣[Ck, A∗]Au

∣∣2
√∫

f |Cku|2

−
√∫

f |CkAu|2
√∫

f
∣∣[A, Ck]u

∣∣2.

Then Assumption (iii) implies

(6.25)

√∫
f
∣∣[Ck, A∗]Au

∣∣2 ≤ c
(√∫

f |A2u|2 +

√∫
f |AC1u|2 + . . .

+

√∫
f |ACku|2

)
.
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Finally,

(II)k
A = 2

∫
f〈CkAu, Ck+1Au〉 +

∫
f
〈
[Ck, A

∗]Au, Ck+1u
〉

+

∫
f
〈
Cku, [Ck+1, A

∗]Au
〉

+

∫
f
〈
CkAu, [A, Ck+1]u

〉

+

∫
f
〈
[A, Ck]u, Ck+1Au

〉
.

and this can be bounded below by a negative multiple of

√∫
f |CkAu|2

√∫
f |Ck+1Au|2 +

√∫
f |Cku|2

√∫
f
∣∣[Ck+1, A∗]Au

∣∣2

+

√∫
f |CkAu|2

√∫
f
∣∣[A, Ck+1]u

∣∣2+

√∫ ∣∣[A, Ck]u
∣∣2
√∫

f |Ck+1Au|2;

then one can apply (6.25) (as it is, and also with k replaced by k + 1)
to control the various terms above.

All in all, everything can be bounded in terms of the integrals ap-
pearing in (6.24), and the computations are exactly the same as in the
proof of Theorem 24; then the same bounds as in Theorem 24 will
work, provided that the coefficients ak and bk are well chosen. The
result is

(6.26)
d

dt
E(h) ≤ −K

∫ 〈S(x)∇h(x),∇h(x)〉
h(x)

dµ(x).

Now let us see what happens if Assumptions (a) and (b) are en-
forced. By assumption (a), we have

∑
|Ck(x)ξ|2 ≥ λ|ξ|2, where λ > 0;

so there exists κ > 0 such that

E(h) ≥
∫

fu + κ

∫
f |∇u|2 =

∫
h log h dµ + κ

∫ |∇h|2
h

dµ.

Thus E will dominate both the Kullback information Hµ(hµ), and the
Fisher information Iµ(hµ).

Then, since S is uniformly positive definite,
∫ 〈S(x)∇h(x),∇h(x)〉

h(x)
dµ(x) ≥ λ

∫ |∇h|2
h

dµ = λ Iµ(hµ).

As a consequence, by Assumption (b),
∫ 〈S(x)∇h(x),∇h(x)〉

h(x)
dµ(x) ≥ κ Hµ(hµ) = κ

∫
fu
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for some κ > 0. So the right-hand side of (6.26) controls also
∫

fu,
and in fact there is a positive constant κ such that

d

dt
E(h) ≤ −κ E(h).

Then we can apply Gronwall’s inequality to conclude the proof of The-
orem 28.

It remains to take into account the additional terms generated by
QA,C,C′ in (6.5). Precisely, in (I)k

A we should consider
∫

f QA,Ck,Ck
(u);

and in (II)k
B we should handle

∫
f QA,Ck ,Ck+1

(u). So the problem is to
bound also these expressions in terms of the quantities (6.24).

We start with the additional term in (I)k
A, that is,

(6.27)

∫
f QA,Ck ,Ck

(u) =

∫
f [A, Ck]

∗(Au ⊗ Cku).

By assumption [A, Ck]
∗ is controlled by I and A, so there is a constant

c such that
(6.28)∣∣∣∣
∫

[A, Ck]
∗(Au ⊗ Cku)

∣∣∣∣ ≤ c

(∫
f
∣∣A(Au ⊗ Cku)

∣∣ +

∫
f
∣∣Au ⊗ Cku

∣∣
)

.

Next, by the rules of derivation of products,

A(AuCku) = (A2u)(Cku) + (Au)(ACku)

= (A2u)(Cku) + (Au)(CkAu) + (Au)([A, Ck]u).

Here as in the sequel, I have omitted indices for simplicity; the above
equation should be understood as Aℓ(Aiu Ck,ju) = (AℓAiu)(Ck,ju) +
(Aℓu)(Ck,jAiu) + (Aℓu)([Ai, Ck,j]u). Since by assumption [A, Ck] is
controlled by {Cj}0≤j≤k, there exists some constant c such that the
following pointwise bounds holds:

|A(Au⊗Cku)| ≤ c

(
|A2u| |Cku| + |Au| |CkAu| + |Au|2 +

∑

0≤j≤k

|Au| |Cju|
)

.
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Plugging this in (6.28) and then in (6.27), then using the Cauchy–
Schwarz inequality, we end up with

∣∣∣∣
∫

f QA,Ck,Ck
(u)

∣∣∣∣ ≤ c

(√∫
f |A2u|2

√∫
f |Cku|2

+

√∫
f |Au|2

√∫
f |CkAu|2

+
∑

j≤k

√∫
f |Au|2

√∫
f |Cju|2 +

√∫
f |Au|2

√∫
f |Cku|2

)
.

All these terms appear in (I)k
A with a multiplicative coefficient ak. So

they can be controlled in terms of (6.24), with the right coefficients, as
in the proof of Theorem 24, if

ak ≪ max
(√

a0 bk−1,
√

ak, 1, max
j≤k

√
bj−1,

√
bk−1

)
.

These conditions are enforced by the construction of the coefficients
(aj) and (bj).

Now we proceed similarly for the additional terms in (II)k
B. By

repeating the same calculations as above, we find

∣∣∣∣
∫

f QA,Ck,Ck+1
(u)

∣∣∣∣ ≤ c

(√∫
f |Au|2

√∫
f |Ck+1u|2

+

√∫
f |A2u|2

√∫
f |Ck+1u|2

+

√∫
f |Au|2

√∫
f |Ck+1Au|2 +

∑

j≤k+1

√∫
f |Au|2

+

√∫
f |Cju|2++

√∫
f |Au|2

√∫
f |Cku|2+

√∫
f |A2u|2

√∫
f |Cku|2

+

√∫
f |Au|2

√∫
f |CkAu|2

)
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All these terms come with a coefficient bk, and they are properly con-
trolled by (6.24) if

bk ≪ max(
√

bk,
√

a0 bk, max
j≤k+1

√
bj−1,

√
a1).

Again, these estimates are enforced by construction. This concludes
the proof of Theorem 28. �

7. Application: the kinetic Fokker–Planck equation

In this section I shall apply the preceding results to the kinetic
linear Fokker–Planck equation, which motivated and inspired the proof
of Theorem 18 as well as previous works [14, 34, 32].

The equation to be studied is (2.6), which I recast here:

(7.1)
∂h

∂t
+ v · ∇xh −∇V (x) · ∇vh = ∆vh − v · ∇vh;

and the equilibrium measure takes the form

µ(dx dv) = γ(v) e−V (x) dv dx, γ(v) =
e−

|v|2

2

(2π)n/2
,

∫
e−V = 1.

Let H := L2(µ), A := ∇v, B := v · ∇x − ∇V (x) · ∇v. Then (7.1)
takes the form ∂h/∂t + Lh = 0, with L = A∗A + B, B∗ = −B. The
kernel K of L is made of constant functions, and the space H1 = H1(µ)
is the usual L2-Sobolev space of order 1, with derivatives in both x and
v variables, and reference weight µ:

‖h‖2
H1 =

∫

Rn×Rn

(
|∇vh(x, v)|2 + |∇xh(x, v)|2

)
µ(dx dv).

By direct computation,

[A, A∗] = I, C := [A, B] = ∇x, [A, C] = [A∗, C] = 0,

[B, C] = ∇2V (x) · ∇v.

7.1. Convergence to equilibrium in H1. In the present case,
assumptions (i)–(iii) of Theorem 18 are satisfied if

(7.2) ∇2V is relatively bounded by {I,∇x} in L2(e−V ).

By Lemma A.24 in Appendix A.23, this is true as soon as there exists
a constant c ≥ 0 such that

(7.3) |∇2V | ≤ c(1 + |∇V |).
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The other thing that we should check is the coercivity of A∗A+C∗C,
which amounts to the validity of the Poincaré inequality of the form

(7.4)

∫
(|∇vh|2 + |∇xh|2) dµ ≥ κ

[∫
h2 dµ −

(∫
h dµ

)2
]

.

Since µ is the tensor product of a Gaussian distribution in Rn
v (for

which the Poincaré inequality holds true with constant 1) and of the
distribution e−V in Rn

x, the validity of (7.4) is equivalent to the validity
of a Poincaré inequality (in Rn

x)

(7.5)

∫
|∇xh(x)|2 e−V (x) dx ≥ λ

[∫
h2 e−V −

(∫
he−V

)2
]

.

This functional inequality has been studied by many many authors,
and it is natural to take it as an assumption in itself. Roughly speak-
ing, inequality (7.5) needs V to grow “at least linearly” at infinity. In
Theorem A.1 in Appendix A.19 I recall a rather general sufficient con-
dition for (7.5) to be satisfied; it holds true for instance if (7.3) is true
and |∇V (x)| → ∞ at infinity. Then Theorem 18 leads to the following
statement:

Theorem 35. Let V be a C2 potential in R
n, satisfying condi-

tions (7.3) and (7.5). Then, with the above notation, there are con-
stants C ≥ 0 and λ > 0, explicitly computable, such that for all
h0 ∈ H1(µ),

∥∥∥∥e
−tLh0 −

∫
h0 dµ

∥∥∥∥
H1(µ)

≤ Ce−λt‖h0‖H1(µ).

Remark 36. Conditions (7.3) and (7.5) morally mean that the po-
tential V should grow at least linearly, and at most exponentially fast
at infinity. These conditions are more general than those imposed by
Helffer and Nier [32] 3 in that no regularity at order higher than 2 is
needed, and there is no restriction of polynomial growth on V . Here is
a more precise comparison: Helffer and Nier prove exponential conver-
gence under two sets of assumptions: on one hand, [32, Assumption
5.6]; on the other hand, [32, Assumption 5.7] plus a spectral gap con-
dition which is equivalent to (7.5). Both these assumptions 5.6 and 5.7
contain [32, eq.(5.17)], which is stronger than (7.3). Finally, the spec-
tral gap condition is not made explicitly in [32, Assumption 5.6], but
is actually a consequence of that assumption, since it implies (A.19.1).

3This comparison should not hide the fact that the estimates by Helffer and
Nier were already remarkably general, and constituted a motivation for the genesis
of this paper.
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Proof of Theorem 35. We already checked all the assumptions
of Theorem 18, except for the existence of a convenient dense subspace
S. If V is C∞, it is possible to choose the space of all C∞ functions on
Rn

x×Rn
v whose derivatives of all orders vanish at infinity faster than any

inverse power of (1 + |∇V |)(1 + |v|). (Note that the operators appear-
ing in the theorem preserve this space because |∇2V | is bounded by a
multiple of 1+ |∇V |.) Then there only remains the problem of approx-
imating V by a C∞ potential, without damaging Condition (7.3). This
can be done by a standard convolution argument: let Vε := V ∗ ρε,
where ρε(x) = ε−nρ(x/ε), and ρ is C∞, supported in the unit ball,
nonnegative and of unit integral. Then, for all ε > 0,

|∇2Vε(x)| ≤ sup
|x−y|≤ε

|∇2V (y)| ≤ C sup
|x−y|≤ε

(1 + |∇V (y)|).

But (7.3) implies that log(1 + |∇V |2) is L-Lipschitz (L = 2C), so

|x − y| ≤ ε =⇒ 1 + |∇V (x)|2
1 + |∇V (y)|2 ≤ eLε.

In particular, by (7.3), |∇2V (y)| can be controlled in terms of |∇V (x)|,
for y close to x. It follows

|x − y| ≤ ε =⇒ |∇V (x) −∇V (y)| ≤ C (1 + |∇V (x)|) εeLε.

As a consequence,

|∇Vε(x) −∇V (x)| ≤ C (1 + |∇V (x)|) εeLε.

From this one easily deduces 1+ |∇Vε(x)| ≥ (1−C ′ε)(1+ |∇V (x)|), for
some explicit constant C ′. Then, Vε satisfies the same condition (7.3)

as V , up to the replacement of the constant C by some constant C̃(ε)
which converges to C as ε → 0.

All in all, after replacing V by Vε, we can apply the first part of
Theorem 18 to get

(7.6)

((hε(t), hε(t))) + K

∫ t

0

(∫
(|∇xhε(s)|2 + |∇vhε(s)|2)e−Vε(x)γ(v)

)
ds

≤ ((h0, h0)),

where hε(t) = e−tLε(h0 −
∫

h0), and K is a constant independent of ε.
By the uniqueness theorem of Appendix A.20, hε(t) converges to

h(t) = e−tLh, in distributional sense as ε → 0. Also,
∫

h0 e−Vεγ −→∫
h0 e−V γ. Since the left-hand side is a convex functional of h and Vε

converges locally uniformly to V , inequality (7.6) passes to the limit
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as ε → 0. The Poincaré inequality for e−V and the definition of the
auxiliary scalar product guarantee the existence of K ′ > 0 such that

((h(t), h(t))) + K ′

∫ t

0

((h(s), h(s))) ds ≤ ((h0, h0)).

The exponential convergence of ((h(t), h(t))) to 0 follows, and the the-
orem is proved. �

7.2. Explicit estimates. As a crude test of the effectiveness of
the method, one can repeat the proof of Theorem 18 on the particular
example of the Fokker–Planck equation, taking advantage of the extra
structure to get more precise results. Using [A, A∗] = I, one obtains

(7.7) ((h, Lh)) ≥ ‖Ah‖2 + a‖A2h‖2 + b‖Ch‖2 + c‖CAh‖2 − (E),

(E) := a(‖Ah‖2 + ‖Ah‖ ‖Ch‖)
+ b(‖Ah‖ ‖R2h‖ + 2‖A2h‖ ‖CAh‖ + ‖Ah‖ ‖Ch‖)

+ c‖Ch‖ ‖R2h‖.
Moreover, R2h = −[B, C] = ∇2V · A; to simplify computations even
more, assume that |∇2V | ≤ M (in Hilbert-Schmidt norm, pointwise on
Rn). Then

(E) ≤ a(‖Ah‖2 + ‖Ah‖ ‖Ch‖)

+ b
(
M‖Ah‖2 + 2‖A2h‖ ‖CAh‖ + ‖Ah‖ ‖Ch‖

)
+ cM‖Ah‖ ‖Ch‖

= (a + bM)‖Ah‖2 + (a + b + cM)‖Ah‖ ‖Ch‖ + 2b‖A2h‖ ‖CAh‖
≤ (a + bM + 1/4)‖Ah‖2 + (a + b + cM)2‖Ch‖2 + a‖A2h‖2

+
b2

a
‖CAh‖2.

Since b2/a ≤ c, the last two terms above are bounded by the terms in
‖A2h‖2 and ‖CAh‖2 in (7.7); so

((h, Lh)) ≥ [1 − (a + bM + 1/4)] ‖Ah‖2 +
[
b − (a + b + cM)2

]
‖Ch‖2

On the other hand, taking into account the spectral gap assumption
on A∗A + C∗C,

((h, h)) ≤ (2a + κ−1)‖Ah‖2 + (2c + κ−1)‖Ch‖2.

So the proof yields a convergence to equilibrium in H1 like O(e−λt),
where

λ := sup
(a,b,c)

min

(
1 − (a + bM + 1

4
)

2a + κ−1
,

b − (a + b + cM)2

2c + κ−1

)
,
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and the supremum is taken over all triples (a, b, c) with b2 ≤ ac.
In the particular (quadratic) case where ∇2V is the identity, one

has M = 1, κ = 1; then the choice a = b = c = 0.05 yields λ = 0.025,
which is off the true (computable) rate of convergence to equilibrium
λ = 1/2 (see [47, p. 238–239]) by a factor 20. Thus, even if the method
is not extremely sharp, it does yield quite decent estimates.4 Note that
the coefficients a, b, c chosen in the end do not satisfy c ≪ b ≪ a!

7.3. Convergence in L2. Theorem 35 is stated for H1 initial
data. However, it can be combined with an independent regularity
study: Under condition (7.3), one can show that solutions of (7.1)
satisfy the estimate

(7.8) 0 ≤ t ≤ 1 =⇒ ‖f(t, ·)‖H1(µ) ≤
C

t3/2
‖f(0, ·)‖L2(µ).

A proof is provided in Appendix A.21. Combined with Theorem 35,
this estimate trivially leads to the following statement:

Theorem 37. Let V be a C2 potential in Rn, satisfying condi-
tions (7.3) and (7.5). Then, with the above notation, there are con-
stants C ≥ 0 and λ > 0, explicitly computable, such that for all
h0 ∈ L2(µ),

t ≥ 1 =⇒
∥∥∥∥e

−tLh0 −
∫

h0 dµ

∥∥∥∥
H1(µ)

≤ Ce−λt‖h0‖L2(µ).

Remark 38. The following more precise estimate displays at the
same time the convergence to equilibrium and the regularization pro-
cess: There are positive constants C and λ such that for all t0 ∈ (0, 1),
t ≥ t0, ∥∥∥∥e

−tLh0 −
∫

h0 dµ

∥∥∥∥
H1(µ)

≤ C
e−λ(t−t0)

t
3/2
0

‖h0‖L2(µ)

7.4. Convergence for probability densities. Write e−V (x)γ(v) =
e−E(x,v), and set f = e−Eh, then the Fokker–Planck equation (7.1) be-
comes the kinetic equation for the density of particles:

(7.9)
∂f

∂t
+ v · ∇xf −∇V (x) · ∇vh = ∇v · (∇vf + fv).

The previous results show that there is exponential convergence to
equilibrium as soon as ∫

f 2eE dx dv < +∞.

4As a comparison, the bounds by Hérau and Nier [34, formula (4)] yield a lower
bound on λ which is around 10−4.
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As an integrability estimate, this assumption is not very natural for
a probability density; as a decay estimate at infinity, it is extremely
strong. The goal now is to establish convergence to equilibrium under
much less stringent assumptions on the initial data, maybe at the price
of stronger assumptions on the potential V .

An obvious approach to this problem consists in using stronger
hypoelliptic regularization theorems. For instance, it was shown by
Hérau and Nier [34] that if the initial datum in (7.1) takes the form is
only assumed to be a tempered distribution, then the solution at later
times lies in L2(µ), and in fact takes the form

√
e−Eg, where g is C∞

with rapid decay. Similar results can also be shown by variants of the
method exposed in Appendix A.21; for instance one may show that
if the initial datum belongs to a negative L2-Sobolev space of order k
then for positive times the solution belongs to a positive L2-Sobolev
space of order k′, whatever k and k′. In particular, this approach works
fine if the initial datum for (7.9) is a probability measure f0 satisfying

∫
eE(x,v)/2f0(dx dv) < +∞.

However this still does not tell anything if we assume only polynomial
moment bounds on f0.

In the next result (apparently the first of its kind), this problem will
be solved with the help of Theorem 28, that is, by using an entropy
approach.

Theorem 39. Assume that
(a) V ∈ C2(Rn) with |∇2V (x)| ≤ C for all x ∈ Rn;

(b) the reference measure µ satisfies a logarithmic Sobolev inequality;

(c) f0(dx dv) is a probability measure with finite moments of order 2:
∫

Rn×Rn

(|x|2 + |v|2) f0(dx dv) < +∞.

Then the solution to (7.9) with initial datum f0 converges to e−E expo-
nentially fast as t → ∞, in the sense of relative entropy:

(7.10)

∫
f(t, x, v) log

(
f(t, x, v)

e−E(x,v)

)
dx dv = O(e−αt) (t ≥ 1),

with explicit estimates.

Remark 40. A well-known sufficient condition for e−V to satisfy
a logarithmic Sobolev inequality is V = W + w, where ∇2W ≥ κIn,
κ > 0, and w is bounded (this is the so-called “uniformly convex +
bounded” setting).
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Remark 41. Here are more precise results in the spirit of Re-
mark 38. Write Hµ(h) =

∫
h log h dµ. First, there are positive con-

stants C and λ (only depending on V ) such that for all t0 ∈ (0, 1),
t ≥ t0,

(7.11) Hµ(e−tLh) ≤ C e−λ (t−t0)

t30
Hµ(h).

Secondly, one can find an exponent β = β(n), a constant C de-
pending only on n, V and on

∫
(|x|2 + |v|2) f0(dx dv) such that for all

t0 ∈ (0, 1), t ≥ t0,

(7.12) Hµ(e−tLh) ≤ C e−λ(t−t0)

tβ0
.

Proof of Theorem 39. Since ∇V is Lipschitz by assumption, it
can be shown by standard techniques that the Fokker–Planck equation
admits a unique measure-valued solution. So it is sufficient to establish
the convergence for very smooth initial data, with rates that do not
depend on the smoothness of the initial datum, and then use a density
argument.

I shall give two slightly different proofs of (7.10). The first argument
will involve less steps but require more moments and assumptions. The
second proof will achieve the generality stated in Theorem 39.

First proof of (7.10): In this proof I shall assume that V ∈ C∞(Rn)
with |∇jV (x)| ≤ Cj for all j ≥ 2 and x ∈ Rn; and that f0 has bounded
moments of all orders, not just of order 2.

Since ∇2V is bounded, the transport coefficients appearing in (7.9)
are Lipschitz (uniformly for (x, v) ∈ R

n
x×R

n
v ), and it is easy to show by

classical estimates that all moments increase at most linearly in time:∫
(1 + |v|2 + |x|2)k/2f(t, dx dv) = O(1 + t).

By Theorem A.15 in Appendix A.21, f(t, ·) also belongs to all
Sobolev spaces (in x and v) for t > 0; in fact, estimates of the form

‖f(t, ·)‖Hk
xHℓ

v(Rn
x×Rn

v ) = O(t−β(k,ℓ)) 0 < t ≤ 1

will be established in that Appendix. Then by elementary interpola-
tion, f(t, ·) lies in all weighted Sobolev spaces for all t ∈ (0, 1): That
is,

‖f(t, ·)‖Hk
s

:= ‖f(t, x, v)(1 + |v|2 + |x|2)s/2‖Hk < +∞.

It is shown in [55, Lemma 1] that I(f) ≤ C‖f‖Hk
s

for k and s large
enough (depending on n), where I(f) stands for the Fisher information,∫

f |∇(log f)|2/f . So f(t, ·) has a finite Fisher information (in both x
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and v variables) for all t > 0. Since also f(t, ·) has all its moments
bounded and |∇E| = O(1 + |x| + |v|), we have in fact

∫
f
∣∣∇(log f + E)

∣∣2 = O(t−γ) 0 < t ≤ 1

for some γ > 0, where the time variable is omitted in the left-hand
side. So from time t = t0 > 0 on, the solution f has a finite relative
Fisher information with reference measure µ(dx dv) = e−E(x,v) dx dv.

Then we can apply Theorem 28 with A = ∇v, B = v ·∇x−∇V (x) ·
∇v, C1 = [A, B] = ∇x, R1 = 0, C2 = 0, R2 = ∇2V (x) · ∇v, Zj = I.
Assumptions (i), (ii), (iii) and (v) in Theorem 28 are automatically
satisfied, and Assumption (iv) is also satisfied since ∇2V is bounded.
(This is the place where the boundedness of the Hessian of V is crucially
used.) Since the reference measure µ is the product of e−V (x) dx (which
satisfies a logarithmic Sobolev inequality by assumption) with γ(v) dv
(which also satisfies a logarithmic Sobolev inequality), µ itself satisfies
a logarithmic Sobolev inequality. So Theorem 28 yields the estimate

∫
f(log f + E) = O(e−λ(t−t0))

for t ≥ t0. In words: The relative entropy of the solution with respect
to the equilibrium measure converges to 0 exponentially fast as t → ∞.
This concludes the proof of (7.12) and establishes the desired estimate.
(To obtain (7.11), replace Theorem A.15 by Theorem A.18.)

Second proof of (7.10): Now I shall work under just the assumptions
stated in Theorem 39. As before, the Lipschitz bound on ∇V implies∫

(|x|2 + |v|2) f(t, dx dv) = O(1 + t). Then we apply Theorem A.15 in
Appendix A.21, but only for m = 1 (so we do just as in the proof of
Theorem A.8, but with L1 a priori bounds rather than L2). For this it
is sufficient that ∇2V be bounded. Then we obtain

∫
|∇x,vf |2 dx dv =

O(t−β) for some β > 0, so by Nash inequality
∫

f 2 dx dv = O(t−γ) for
some other γ > 0. This and the bound on

∫
f(|x|2 + |v|2) dx dv imply

a bound on
∫

f log f for any t > 0.
Since log E = O(1+|x|2) and f has second-order moments, it follows

that Hµ(f) =
∫

f log(f/E) is finite for t > 0. At this point we can
apply the entropic hypoelliptic regularization phenomenon stated in
Theorem A.18 and deduce the finiteness of the Fisher information Iµ(f)
for positive time. Then the rest of the argument is based on Theorem 28
as in the first proof above. �
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8. The method of multipliers

A crucial ingredient in the L2 treatment of the Fokker–Planck equa-
tion was the use of the mixed second derivative CAh = ∇v∇xh to
control the error term [B, C]h = (∇2V ) · ∇vh. There is an alterna-
tive strategy, which does not need to use CA: It consists in modify-
ing the quadratic form (4.2) thanks to well-chosen auxiliary operators,
typically multipliers. In the case of the Fokker–Planck equation, this
method leads to less general results; it is however of independent inter-
est, and can certainly be applied to many equations. In this section I
shall present a variant of Theorem 18 allowing for multipliers, and test
its applicability to the Fokker–Planck equation. Some extensions are
feasible, but I shall not consider them.

Let again A and B be as in Subsection 1.1, and C = [A, B], R2 =
[C, B]; assume that [A, C] = 0 for simplicity. Let M , N be two self-
adjoint, invertible nonnegative operators such that

[B, M ] = 0, [B, N ] = 0, [M, N ] = 0

(these conditions can be somewhat relaxed by imposing only an ade-
quate control on the commutators, but this leads to cumbersome cal-
culations). Instead of (4.2), consider the quadratic form

(8.1) ((h, h)) = ‖h‖2 + a‖MAh‖2 + 2b〈MAh, NCh〉 + c‖NCh‖2.

By straightforward variants of the calculations performed in the proof
of Theorem 18, one obtains

((h, Lh)) = ‖Ah‖2 + a‖MA2h‖2 + b‖
√

MNCh‖2 + c‖NCAh‖2 − (E),

where

−(E) := a
(
〈MAh, MCh〉+

〈
MAh, [M, A∗]A2h

〉
+
〈
[A, M ]Ah, MA2h

〉

+ 〈MAh, M [A, A∗]Ah〉
)

+ b
(
〈MAh, N [B, C]h〉 + 2

〈
MA2h, NCAh

〉

+ 〈[A, M ]Ah, NCAh〉 + 〈MAh, [N, A∗]CAh〉 +
〈
[A, N ]Ch, MA2h

〉

+
〈
NCh, [M, A∗]A2h

〉
+ 〈NCh, M [A, A∗]Ah〉

)

+c
(
〈NCh, NR2h〉 + 〈[A, N ]Ch, NCAh〉 + 〈NCh, [N, A∗]CAh〉

)
.

It would be a mistake to use Cauchy–Schwarz inequality right now.
Instead, one should first “re-distribute” the multipliers M and N on the
two factors in the scalar products above. For instance, 〈MAh, MCh〉 is
first rewritten 〈Ah, M2Ch〉 since it should be controlled by (inter alia)
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‖Ah‖2, not ‖MAh‖2. To obtain the correct weights, one is sometimes
led to introduce the inverses M−1 and N−1. In the end,

(E) ≤ a
(
‖Ah‖ ‖M2Ch‖ + ‖Ah‖ ‖M [M, A∗]A2h‖

+ ‖[A, M ]Ah‖ ‖MA2h‖ + ‖Ah‖ ‖M2[A, A∗]Ah‖
)

+b
(
‖Ah‖ ‖MN [B, C]h‖+2‖MA2h‖ ‖NCAh‖+‖[A, M ]Ah‖ ‖NCAh‖

+ ‖Ah‖ ‖M [N, A∗]CAh‖ + ‖(
√

MN)Ch‖ ‖(
√

N/M)[M, A∗]A2h‖

+ ‖[A, N ]Ch‖ ‖MA2h‖ + ‖
√

MNCh‖ ‖
√

MN [A, A∗]Ah‖
)

+ c
(
+‖(

√
MN)Ch‖ ‖(N3/2/M1/2)R2h‖

+ ‖[A, N ]Ch‖ ‖NCAh‖ + ‖(
√

MN)Ch‖ ‖(
√

N/M)[N, A∗]CAh‖
)
.

Of course, in the above
√

N/M stands for N1/2M−1/2, etc.
Repeating the scheme of the proof of Theorem 18, it is easy to

see that (E) can be controlled in a satisfactory way as soon as, say
(conditions are listed in order of appearance and the notation of Sub-
section 1.3 is used),

M2
4

√
MN, [M, A∗] 4 I, [A, M ] 4 I, M2[A, A∗] 4 I,

MN [B, C] 4 A, [A, M ] 4 I, M [N, A∗] 4 N, [A, N ] 4

√
MN,

(
√

N/M)[M, A∗] 4 M,
√

MN [A, A∗] 4 I, (N3/2/M1/2)[B, C] 4 A,

[A, N ] 4

√
MN, (

√
N/M)[N, A∗] 4 N.

For homogeneity reasons it is natural to assume N = M3. Then
the above conditions are satisfied if

(8.2) M2[A, A∗] 4 I, M4[B, C] 4 A,

(8.3)
[M, A] 4 I, [M, A∗] 4 I, [M3, A] 4 M2, [M3, A∗] 4 M2.

If these conditions are satisfied, then one can repeat the scheme
of the proof of Theorem 18, with an important difference: instead of
‖Ah‖2 +‖Ch‖2, it is only ‖Ah‖2 +‖(

√
MN)Ch‖2 = ‖Ah‖2 +‖M2Ch‖2

which is controlled in the end. This leads to the following theorem.
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Theorem 42. With the notation of Subsection 1.1, assume that

[C, A] = 0, [C, A∗] = 0,

and that there exists an invertible nonnegative self-adjoint bounded op-
erator M on H, commuting with B, such that conditions (8.2) and (8.3)
are fulfilled. Define

(8.4) ((h, h)) = ‖h‖2 + a‖MAh‖2 − 2b
〈
M2Ah, Ch

〉
+ c‖M3Ch‖2.

Then, there exists K > 0, only depending on the bounds appearing
implicitly in (8.2) and (8.3), such that

ℜ ((h, Lh)) ≥ K(‖Ah‖2 + ‖M2Ch‖2).

If in addition

(8.5) A∗A + C∗M4C admits a spectral gap κ > 0,

then L is hypocoercive on H1/K: there exists constants C ≥ 0 and
λ > 0, explicitly computable, such that

‖e−tL‖H1/K→H1/K ≤ Ce−λt.

As usual, it might be better in practice to guess the right multipliers
and re-do the proof, than to apply Theorem 42 directly. It is also clear
that many generalizations can be obtained by combining the method of
multipliers with the methods used in Theorem 24. Rather than going
into such developments, I shall just show how to apply Theorem 42 on
the Fokker–Planck equation with a potential V ∈ C2(Rn). In that case,
[A∗, A] = I and [B, C] = (∇2V )A. When ∇2V is bounded and A∗A +
C∗C is coercive, there is no need to introduce an auxiliary operator M :
the choice M = I is sufficient to provide exponential convergence to
equilibrium. But a multiplier might be useful when ∇2V is unbounded.
Assume, to fix ideas, that V behaves at infinity like O(|x|2+α) for some
α > 0, and |∇2V | like O(|x|α); then it is natural to use an operator
M which behaves polynomially, in such a way as to compensate the
divergence of V . In the rest of the section, I shall use this strategy
to recover the exponential convergence for the kinetic Fokker–Planck
equation under assumptions (8.6) and (8.7) below.

Let M be the operator of multiplication by m(x, v), where

m(x, v) :=
1

(
V0 + V (x) + |v|2

2

) α
4(2+α)

,

and V0 is a constant, large enough that V0 + V is bounded below by 1.
Since Bm = 0 and B is a derivation, it is true that B commutes with
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M . Assume that V0 + V is bounded below by a multiple of 1 + |x|α+2;
then

m4 ≤ 1

(V0 + V (x))
α

(2+α)

≤ K

(1 + |x|)α

for some constant K > 0, and then m4(∇2V ) is bounded, so that
M4[B, C] is relatively bounded by A. Finally, condition (8.3) reduces
to

|∇vm| ≤ Km,

which is easy to check. To summarize, conditions (8.2) and (8.3) are
fulfilled as soon as there exist constants C ≥ 0, K > 0 and α > 0 such
that

(8.6) ∀x ∈ R
n, V (x) ≥ K|x|2+α−C, |∇2V (x)| ≤ C(1+ |x|α).

To recover exponential convergence under these assumptions, it re-
mains to check the spectral gap assumption (8.5)! This will be achieved
under the following assumption: there exists a potential W , and con-
stants C ≥ 0, K > 0 such that

(8.7) ∀x ∈ R
n, |V (x)−W (x)| ≤ C, ∇2W (x) ≥ K(1+ |x|)−α.

From (8.6) there exists K > 0 such that

m4(x, v) ≥
(

K

(1 + |v|)
1

(2+α)

)
1

(1 + |x|)α
=: Φ(v)Ψ(x).

Then

∇∗
xm

4∇x ≥ Φ(∇∗
xΨ∇x).

Now I claim that ∇∗
xΨ∇x (where Ψ is a shorthand for the multiplication

by Ψ) is coercive in L2(e−V dx), or in other words that there exists
K > 0 such that

∫
fe−V = 0 =⇒

∫
Ψ|∇xf |2e−V ≥ K

∫
f 2e−V ;

or equivalently, that there is a constant C such that for all f ∈ L2(e−V ),

∫
[f(x) − f(y)]2 e−V (x)e−V (y) dx dy ≤ C

∫
Ψ(x)|∇xf(x)|2e−V (x) dx.
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Indeed, with C standing for various positive constants, one can write
∫

[f(x) − f(y)]2 e−V (x)e−V (y) dx dy

≤ C

∫
[f(x) − f(y)]2 e−W (x)e−W (y) dx dy

≤ C

∫ 〈
(∇2W (x))−1∇xf(x),∇xf(x)

〉
e−W (x) dx

≤ C

∫
(1 + |x|)α|∇xf(x)|2 e−V (x) dx,

where the passage from the first to the second line is justified by the
Brascamp–Lieb inequality [8, Theorem 4.1].

Now it is possible to conclude: the operator A∗A = ∇∗
v∇v is coercive

on L2(γ), γ standing for the Gaussian distribution in the v variable,
and the operator ∇∗

xΨ∇x is coercive on L2(e−V ). Theorem A.2 in
Appendix A.19 shows that A∗A+Φ∇∗

xΨ∇x is coercive on L2(µ), where
µ is the equilibrium distribution for the Fokker–Planck equation. By
monotonicity, A∗A + C∗M4C also admits a spectral gap; this was the
last ingredient needed for Theorem 42 to apply.

9. Further applications and open problems

A very nice application of Theorem 24 was recently done by Capella,
Loeschcke and Wachsmuth on the so-called Landau–Lifschitz–Gilbert–
Maxwell model arising in micromagnetism. Under certain simplifying
assumptions, the linearized version of this model can be written

(9.1)





∂tm = J(h − m)

∂th = −∇ ∧∇ ∧ h − J(h − m)

∇ · h = −∇ · m,

where m : R3 → R2 stands for the (perturbation of the) magnetization,
and h : R3 → R3 for the (perturbation of the) magnetic field; moreover,
J is the usual symplectic operator J [x1, x2, x3] = [−x2, x1]. Obviously,
the system (9.1) is dissipative but strongly degenerate, since the dissi-
pation term −∇∧∇∧h only acts on h, and not even on all components
of h. This case turns out to be particularly degenerate since one needs
three commutators to apply Theorem 24. For further details I refer the
reader to the preprint by Capella, Loeschcke and Wachsmuth [10].
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Still, many issues remain open in relation to the hypocoercivity of
operators of the form A∗A + B. I shall describe four of these open
problems below.

9.1. Convergence in entropy sense for rapidly increasing
potentials. In the present paper I have derived some first results of
exponential convergence to equilibrium for the kinetic Fokker–Planck
equation based on an entropy method (Theorem 39). While these re-
sults seem to be the first of their kind, they suffer from the restriction
of boundedness imposed on the Hessian of the potential. It is not clear
how to relax this assumption in order to treat, say, potentials that be-
have at infinity like |x|β, β > 2. A first possibility would be to try to
adapt the method of multipliers, but then we run into two difficulties:
(a) Entropic variants of the Brascamp-Lieb inequality do not seem to
be true in general, and are known only under certain particular re-
strictions on the reference measure (see the discussion by Bobkov and
Ledoux [6, Proposition 3.4]); (b) It is not clear that there is an entropic
analogue of Theorem A.3. Both problems (a) and (b) have their own
interest.

Another option would be to try to relax the local conditions (i)–
(iv) into global (integrated) boundedness conditions, so as to have an
analogue of Lemma A.24 where the reference measure would be the
solution f of the Fokker–Planck equation. This is conceivable only if
f satisfies some good a priori estimates for positive times.

9.2. Application to oscillator chains. One of the motivations
for the present study was the hope to revisit the works by Eckmann,
Hairer, Rey-Bellet and others on hypoelliptic equations for oscillator
chains, modelling heat diffusion [19, 20, 21, 45, 46]. So far I have
obtained only very partial success in that direction. If we try to apply
Theorem 24 to the model, as it is described e.g. in the last section
of [20], we find that the assumptions of Theorem 24 apply as soon as

(a) the “pinning potential” V1 and the “interaction potential” V2

have bounded Hessians;
(b) the Hessian of the interaction potential is bounded below by a

positive constant;
(c) the second derivatives of the logarithm of the stationary density

are bounded;
(d) the stationary measure satisfies a Poincaré inequality.

Let us discuss these conditions. Assumption (a) is a bit too restric-
tive, since it excludes for instance the quartic double-well potentials
which are classically used in that field; but it would still be admissible
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for a start; and hopefully this restriction could be relaxed later by a
clever use of the method of multipliers. (By the way, it is interesting to
note that such assumptions are not covered by the results in [20] which
need a superquadratic growth at infinity.) Next, Assumption (b) is not
so surprising since (as far as I know) it has been imposed by all authors
who worked previously on the subject.5 But it is a completely open
problem to derive sufficient conditions for Assumptions (c) and (d),
except in the simple case where the two temperatures of the model are
equal. This example illustrates an important remark: The range of ap-
plication of Theorem 24 (and other theorems of the same kind) will be
considerably augmented when one has qualitative theorems about the
stationary measure for nonsymmetric diffusion processes. For instance,

- Are there simple conditions implying a Poincaré inequality for the
stationary measure?

- Can one derive bounds about the Hessian of the logarithm of its
density?

The first question was addressed recently in papers by Röckner
and Wang (see for instance [48]) in the context of elliptic equations,
and it looks like a challenging open problem to extend their results to
hypoelliptic equations. The second question seems to be completely
open; of course it has its intrinsic interest, since very little has been
known so far about the stationary measures constructed e.g. in [21].

9.3. The linearized compressible Navier–Stokes system. An
extremely interesting instance of hypocoercive linear system is pro-
vided by the linearized compressible Navier–Stokes equations for per-
fect gases. In this example, the noncommutativity does not arise be-
cause of derivation along noncommuting vector fields, but because of
the noncommutativity of the space where the unknown takes its values.

Obtained by linearizing the nonlinear system of Section 16 around
the equilibrium state (1, 0, 1), the linearized compressible Navier–Stokes
system reads as follows:

(9.2)





∂tρ + ∇ · u = 0;

∂tu + ∇(ρ + θ) = µ ∆u + µ
(
1 − 2

N

)
∇(∇ · u);

∂tθ + 2
N
∇ · u = κ ∆θ.

5More generally, as pointed out to me by Hairer, all existing results seem to
require that the interaction potential does dominate the pinning potential.
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Here N is the dimension, (ρ, u, θ) are fluctuations of the density, ve-
locity and temperature respectively, µ > 0 is the viscosity of the
fluid and κ > 0 the heat conductivity. So it is natural to define
H = L2(Ω; R × RN × R), where Ω ⊂ RN is the position domain, and
the target space R × RN × R is equipped with the Euclidean norm

∥∥∥(ρ, u, θ)
∥∥∥

2

= ρ2 + |u|2 +
N

2
θ2,

which is (up to a factor −1/2) the quadratic approximation of the usual
entropy of compressible fluids.

Let h = (ρ, u, θ); it turns out that (9.2) can be written in the form
∂th + Lh = 0, where L = A∗A + B, B∗ = −B, and A, B are quite
simple:

(9.3)





Ah =
(
0,

√
2µ {∇u}, √

κ∇θ
)

Bh =
(
∇ · u, ∇ρ + ∇θ, 2

N
∇ · u

)
.

Here I have used the notation

{∇u}ij =

(
1

2

(∂ui

∂xj

+
∂uj

∂xi

)
−
(∇ · u

N

)
δij

)

for the traceless symmetrized (infinitesimal) strain tensor of the fluid.
The system (9.2) is degenerate in two ways. First, the diffusion on

the velocity variable u does not control all directions: In general it is
false that

∫
|{∇u}|2 controls the whole of

∫
|∇u|2 (see the discussion

in [16] for instance: one needs at least an additional control on the
divergence). Secondly, there is no diffusion on the density variable ρ.

This suggests to consider commutators between Ã : h → (0, 0,∇θ) and
B. After some computations one gets (in slightly sketchy notation)

[Ã, B] = C1 + R1; [C1, B] = C2 + R2;

C1h =
2

N

(
0, 0,∇∇ · u

)
; R1h = −(0,∇2θ, 0);

C2h =
2

N
(0, 0,∇∆ρ); R2h =

2

N
(0,−∇2∇ · u,∇∆θ).

So the commutator C1 controls the variations of the divergence of u,
while the iterated commutator C2 controls the variations of the den-
sity ρ. However, if we try to apply Theorem 24 in this situation, we
immediately run into problems to control the remainder R2, and need
to modify the strategy. This problem is tricky enough to deserve a
separate treatment, so I shall not consider it in this memoir.
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9.4. A model problem arising in the study of Oseen vor-
tices. All the material in this subsection was taught to me by Gallay.
Oseen vortices are certain self-similar solutions to the two-dimensional
incompressible Navier–Stokes equation, in vorticity formulation [25,
26]. The linear stability analysis of these vortices reduces to the spec-
tral analysis of the operator S + αB in L2(R2), where

(9.4)





Sω = −∆ω +
|x|2
16

ω − ω

2
,

Bω = BS[G] · ∇ω + 2 BS[G1/2ω] · ∇G1/2;

here BS[ω] is the velocity field reconstructed from the vorticity ω:

BS[ω](x) =
1

2π

∫

R2

(x − y)⊥

|x − y|2 ω(y) dy,

and v⊥ is obtained from v by rotation of angle π/2; moreover G is a

Gaussian distribution: G(x) = e−|x|2/4/(4π); and α is a real parameter.
The spectral study of S + αB turns out to be quite tricky. In the

hope of getting a better understanding, one can decompose ω in Fourier
series: ω =

∑
n∈Z

ωn(r)einθ, where (r, θ) are standard polar coordinates
in R2. For each n, the operators S and B can be restricted to the vector
space generated by einθ, and can be seen as just operators on a function
ω = ω(r):





(Snω)(r) = −∂2
r ω −

(
r

2
+

1

r

)
∂rω −

(
1 − n2

r2

)
ω,

(Bnω)(r) = i n (ϕω − gΩn);

here g(r) = e−r2/4/4π, ϕ(r) = (1 − e−r2/4)/2πr2, and Ωn(r) solves the
differential equation

−(rΩ′)′ +
n2

r
Ω =

r

2
ω.

The regime |α| → ∞ is of physical interest and has already been the
object of numerical investigations by physicists. There are two families
of eigenvalues which are imposed by symmetry reasons; but apart from
that, it seems that all eigenvalues converge to infinity as |α| → ∞, and
for some of them the precise asymptotic rate of divergence O(|α|1/2) has
been established by numerical evidence. If that is correct, this means
that the “perturbation” of the symmetric part S by the antisymmetric,
lower-order operator αB is strong enough to send most eigenvalues to
infinity as |α| → ∞. Obviously, this is again the manifestation of a
hypocoercive phenomenon.
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To better understand this stability issue, Gallagher and Gallay sug-
gested the following

Model Problem 43. Identify sufficient conditions on f : R → R,
so that the real parts of the eigenvalues of

Lα : ω 7−→ (−∂2
xω + x2ω − ω) + iαfω

in L2(R) go to infinity as |α| → ∞, and estimate this rate.

Here is how Gallagher and Gallay obtained a first partial solution
to this problem. Set H = L2(R; C), A = ∂xω+xω, Bω = (iαf)ω. Then
Cω = iαf ′ω, so the operator A∗A + C∗C is of Schrödinger type:

(A∗A + C∗C) ω = (−∂2
xω + x2ω − ω) + α2f ′2ω,

and the spectrum of A∗A + C∗C can be studied via standard semi-
classical techniques. For instance, if f ′(x)2 = x2/(1 + x2)k, k ∈ N,
then the real part of the spectrum of A∗A + C∗C is bounded below
like O(|α|2ν), with ν = min(1, 2/k). Then a careful examination of the
proof of Theorem 18 yields a lower bound like O(|α|ν) on the real part
of the spectrum of A∗A + B.

Tuning parameters in the appropriate way leads to optimal results
in this problem; see [24] for more information. In this reference the
authors also compare the results obtained by hypocoercivity, to the
results obtained by a more precise (but more tricky) spectral analysis.





Part II

The auxiliary operator method



In this part I shall present an abstract hypocoercivity theorem ap-
plying to a linear operator L whose symmetric part is nonnegative, but
which does not necessarily take the form A∗A+B. Still it will be useful
to decompose L into its symmetric part S and its antisymmetric part
B. Of course, we could always define A to be the square root of S, but
this might be an extremely complicated operator, and the assumptions
of the A∗A + B Theorems might in practice be impossible to check.
Important applications arise when the operator S contains an integral
part, as in the linearized Boltzmann equation.

A classical general trick in spectral theory, when one studies the
properties of a given linear operator L, consists in introducing an aux-
iliary operator which has good commutation properties with L. Here
the idea will be similar, with just an important twist: We shall look
for an auxiliary operator A which “almost commutes” with S and
“does not at all” commute with B, in the sense that the effect of the
commutator [A, B] will be strong enough to enforce the coercivity of
S + [A, B]∗[A, B].

With this idea in mind, I had been looking for a hypocoercivity
theorem generalizing, say, Theorem 18, but stumbled on the problem
of practical verification of my assumptions. In the meantime, Clément
Mouhot and Lukas Neumann found a theorem which, while in the
same spirit of Theorem 18, has some important structural differences.
The Mouhot–Neumann theorem is quite simple and turns out to be
applicable to many important cases, as investigated in [43]; so in the
sequel I shall only present their approach, with just slight variations and
a more abstract treatment. Then I shall discuss the weak points of this
method, and explain why another theory still needs to be developed,
probably with slightly more sophisticated tools. At the time of writing,
Frédéric Hérau has made partial progress in this direction.



10. ASSUMPTIONS 71

10. Assumptions

In the sequel, H is a separable Hilbert space on R or C, S is a
nonnegative symmetric, possibly unbounded operator H → H and B
is an antisymmetric, possibly unbounded operator H → H. Then
A = (A1, . . . , Am) is an array of unbounded operators H → H. All of
these operators are defined on a common dense domain. I shall actually
ignore all regularity issues and be content with formal calculations, to
be considered as a priori estimates.

The same conventions as in Section 1 will apply. Some of the as-

sumptions below will involve
√

S
−1

U for various operators U ; of course,
this is not rigorous since

√
S is in general not invertible. To make sense

of these assumptions, one can either consider them as a priori estimates
for a regularized problem in which S is replaced by an invertible ap-
proximation (something like S + εI, and one tries to get estimates
which are independent of ε); or supply them with the condition that√

S is invertible on the range of U (a trivial case of application is when
U = 0).

The object of interest is the semigroup generated by the operator

L = S + B.

The next hypocoercivity theorem for L will make crucial use of the
commutator of A and B. I shall write

[A, B] = Z C + R,

where Z is bounded from above and below, and R is some “remainder”.
Now come a bunch of commutator conditions which will be used in

Section 11. Later in Section 12 I shall make some simplifying assump-
tions which will drastically reduce the number of these conditions; but
for the moment I shall keep the discussion at a general level.

(A1)

{
either [C, S] 4

√
S

or
√

S
−1

[C, S] 4
√

S

(A2)





either (A 4
√

SA, C,
√

SC,
√

S)

and ([C, L] 4
√

S,
√

SC)

or
√

S
−1

[C, L] 4
√

S,
√

SC

(A3)
√

S[A∗, C] 4

√
S,

√
SC, C,

√
SA

(A4) (
√

SA∗
4

√
SA, C,

√
SC,

√
S) and (

√
SC∗

4

√
SC,

√
S)
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(A5)





either (A∗
4
√

SA, C,
√

SC,
√

S)

and ([C∗, S] 4
√

S,
√

SC)

or (
√

SA∗
4
√

SA, C,
√

SC, S)

and (
√

S
−1

[C∗, S] 4
√

S,
√

SC)

or [C∗, S] = 0

(A6) R 4

√
S,

√
SC.

(A7) There exist constants κ, c > 0 such that for all h ∈ H,

〈Ah, ASh〉 ≥ κ〈SAh, Ah〉 − c
(
〈Sh, h〉 + 〈SCh, Ch〉 + ‖Ch‖2

)
.

Here is a simple, but sometimes too restrictive, sufficient condition
for (A7) to hold (the proof is left to the reader):

(A7’)





either (A 4
√

SA, C,
√

SC,
√

S)

and ([S, A] 4 C,
√

SC,
√

S)

or
√

S
−1

[S, A] 4
√

S,
√

SC, C

Remark 44. Some of the assumptions (A1)–(A7) can be replaced
by other assumptions involving the commutator [A, S]. I did not men-
tion these alternative assumptions since they are in general more tricky
to check that the ones which I chose. In case of need, the reader can
easily find them by adapting the proof of the main theorem below.

11. Main theorem

Theorem 45 (hypocoercivity for L = S + B). With the same no-
tation as in Section 10, assume that (A1)–(A7) are satisfied. Further
assume that
(11.1)




(i) ∃κ, c > 0; ∀h ∈ (Ker L)⊥,

〈ASh, Ah〉 ≥ κ‖Ah‖2 − c
(
〈Sh, h〉 + 〈SCh, Ch〉 + ‖Ch‖2

)
;

(ii) S + A∗SA + C∗SC + A∗A + C∗C is coercive on (Ker L)⊥.

Then there are constants c, λ > 0, depending only on the constants
appearing implicitly in (A1)–(A7) and (11.1), such that

∥∥∥e−tL
∥∥∥ eH→ eH

≤ c e−λt,
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where H̃ ⊂ (KerL)⊥ is defined by the Hilbert norm

‖h‖2
eH = ‖h‖2 + ‖Ah‖2 + ‖Ch‖2.

Remark 46. Although Condition (11.1)(i) formally resembles As-
sumption (A7), I have preferred to state it together with (11.1)(ii)
because its practical verification often depends on a control of ‖h‖2 by
〈Sh, h〉 + ‖Ch‖2.

Proof of Theorem 45. The proof is quite similar in spirit to
the proof of Theorem 18, so I shall be sketchy and only point out the
main steps in the calculations.

First note that (KerL)⊥ is stable under the evolution by e−tL. In-
deed, if k ∈ Ker L, then (d/dt)〈e−tLh, k〉 = 〈Le−tLh, k〉 = 〈e−tLh, L∗k〉,
so it is sufficient to show that L∗k = 0. But Lk = 0 implies 〈Sk, k〉 =
〈Lk, k〉 = 0, so k ∈ Ker S (here the nonnegativity of S is essential), so
k ∈ Ker B also, and L∗k = (S − B)k = 0.

Next let

F(h) = ‖h‖2 + a‖Ch‖2 + 2bℜ 〈Ch, Ah〉 + c‖Ah‖2,

where ℜ stands for real part, and a, b, c will be chosen later in such
a way that 1 ≫ a ≫ b ≫ c > 0, a ≪

√
b, b ≪ √

ac. In particular,
F(h) will be bounded from above and below by constant multiples of
‖h‖2

eH; so to prove the theorem it is sufficient to establish the estimate

(−d/dt)F(e−tLh) ≥ const.F(e−tLh). Without loss of generality, we can
do it for t = 0 only. In the sequel, I shall also pretend that H is a real
Hilbert space, so I shall not write real parts.

By direct computation,

− d

2 dt

∣∣∣∣
t=0

F(e−tLh) = 〈Sh, h〉(11.2)

+ a〈CSh, Ch〉 + a〈CBh, Ch〉
+ b〈CLh, Ah〉 + b〈Ch, ALh〉
+ c〈ASh, Ah〉 + c〈ABh, Ah〉.

Now we shall estimate (11.2) line after line.

(1) The first line of (11.2) is kept unchanged.

(2) The second line of (11.2) is rewritten as follows:

(11.3) a〈CSh, Ch〉 = a〈SCh, Ch〉 + a〈[C, S]h, Ch〉.
Then the second term in the right-hand side of (11.3) is estimated from

below, either by −a‖[C, S]h‖ ‖Ch‖, or by −a‖
√

S
−1

[C, S]h‖ ‖
√

SCh‖;
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by Assumption (A1), these expressions can in turn be estimated from
below by a constant multiple of

−a
(
‖
√

Sh‖ ‖Ch‖ + ‖
√

Sh‖ ‖
√

SCh‖
)
.

(Here I used the identity 〈Su, u〉 = ‖
√

Su‖2.)

(3) The treatment of the third line of (11.2) is crucial; this is where
the added coercivity from the commutator [A, B] will show up. To
handle the first term in this line, we write

〈CLh, Ah〉 = 〈LCh, Ah〉 + 〈[C, L]h, Ah〉
= 〈SCh, Ah〉 + 〈BCh, Ah〉 + 〈[C, L]h, Ah〉
= 〈SCh, Ah〉 − 〈Ch, BAh〉 + 〈[C, L]h, Ah〉.

When we add this to the second term of the third line, 〈Ch, ALh〉 =
〈Ch, ABh〉 + 〈Ch, ASh〉, we obtain

〈Ch, (AB − BA)h〉 + 〈SCh, Ah〉 + 〈[C, L]h, Ah〉 + 〈Ch, ASh〉
= 〈Ch, (ZC + R)h〉 + 〈SCh, Ah〉 + 〈[C, L]h, Ah〉 + 〈Ch, ASh〉
≥ κ‖Ch‖2 + 〈Ch, Rh〉 + 〈SCh, Ah〉 + 〈[C, L]h, Ah〉 + 〈Ch, ASh〉.

So there are four “error” terms to estimate from below:

(11.4) 〈Ch, Rh〉, 〈SCh, Ah〉, 〈[C, L]h, Ah〉, 〈Ch, ASh〉.

- To estimate the first term in (11.4), just write

〈Ch, Rh〉 ≥ −‖Ch‖ ‖Rh‖
and apply Assumption (A6); there follows a lower bound by a constant
multiple of

−b‖Ch‖
(
‖
√

Sh‖ + ‖
√

SCh‖
)
.

- To estimate the second term in (11.4), use the Cauchy–Schwarz
inequality:

〈SCh, Ah〉 ≥ −‖
√

SCh‖ ‖
√

SAh‖.

- To estimate the third term in (11.4), write either

〈[C, L]h, Ah〉 ≥ −‖[C, L]h‖ ‖Ah‖
or

〈[C, L]h, Ah〉 ≥ −‖
√

S
−1

[C, L]h‖ ‖
√

SAh‖
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and apply Assumption (A2). It results a lower bound by a constant
multiple of

− b
(
‖
√

SAh‖ + ‖Ch‖ + ‖
√

SCh‖ +
√

Sh‖
)(
‖
√

Sh‖ + ‖
√

SCh‖
)

− b
(
‖
√

Sh‖ + ‖
√

SCh‖
)
‖
√

SAh‖
)
.

- The fourth term in (11.4) is a bit more tricky:

〈Ch, ASh〉 = 〈A∗Ch, Sh〉
= 〈[A∗, C]h, Sh〉 + 〈CA∗h, Sh〉
= 〈[A∗, C]h, Sh〉 + 〈A∗h, C∗Sh〉
= 〈[A∗, C]h, Sh〉 + 〈A∗h, SC∗h〉 + 〈A∗h, [C∗, S]h〉.

This gives rise to three more terms to estimate:

(11.5) 〈[A∗, C]h, Sh〉, 〈A∗h, SC∗h〉, 〈A∗h, [C∗, S]h〉.
- To handle the first term in (11.5), write

〈[A∗, C]h, Sh〉 = 〈
√

S[A∗, C]h,
√

Sh〉 ≥ −‖
√

S[A∗, C]h‖ ‖
√

Sh‖;
then apply Assumption (A3) to bound ‖

√
S[A∗, C]h‖. The result is a

lower bound by a constant multiple of

−b‖
√

Sh‖
(
‖
√

Sh‖ + ‖
√

SCh‖ + ‖Ch‖ + ‖
√

SAh‖
)
.

- To bound the second term in (11.5), write

〈A∗h, SC∗h〉 = 〈
√

SA∗h,
√

SC∗h〉 ≥ −‖
√

SA∗h‖ ‖
√

SC∗h‖;
then apply Assumption (A4) to bound these two norms separately.
The result is a lower bound by a constant multiple of

−b
(
‖
√

SAh‖ + ‖Ch‖ + ‖
√

SCh‖ + ‖
√

Sh‖
)(
‖
√

SCh‖ + ‖
√

Sh‖
)
.

- To bound the last term in (11.5), one possibility is to write

〈A∗h, [C∗, S]h〉 ≥ −‖A∗h‖ ‖[C∗, S]h‖;
another possibility is

〈A∗h, [C∗, S]h〉 = 〈
√

SA∗h,
√

S
−1

[C∗, S]h〉 ≥ −‖
√

SA∗h‖ ‖
√

S
−1

[C∗, S]h‖.
Then one can apply Assumption (A5) to control these terms. In the
end, this gives a lower bound by a constant multiple of

−b
(
‖
√

SAh‖ + ‖Ch‖ + ‖
√

SCh‖ + ‖
√

Sh‖
)
(‖
√

Sh‖ + ‖
√

SCh‖).
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(4) Finally, the fourth line of (11.2) is handled as follows:

(11.6) 〈Ah, ASh〉 + 〈Ah, ABh〉 = α〈Ah, ASh〉 + β〈Ah, ASh〉
+ 〈Ah, BAh〉 + 〈Ah, [A, B]h〉,

where α, β ≥ 0 and α + β = 1. The first term α〈Ah, ASh〉 is esti-
mated by means of Assumption (A7); the second term β〈Ah, ASh〉 by
means of Assumption (11.1)(i); altogether, these first two terms can be
bounded below by a constant multiple of

c(‖
√

SAh‖ + ‖Ah‖2) − c
(
‖
√

Sh‖ + ‖
√

SCh‖ + ‖Ch‖2
)
.

Then the third term 〈Ah, BAh〉 in (11.6) vanishes; and the last term
〈Ah, [A, B]h〉 is bounded below by −‖Ah‖ ‖ZCh‖−‖Ah‖ ‖Rh‖, which
in view of Assumption (A6) can be bounded below by a constant
multiple of

−c‖Ah‖ ‖Ch‖ − c‖Ah‖
(
‖
√

Sh‖ + ‖
√

SCh‖
)
.

Gathering up all these lower bounds, we see that

− d

2 dt
F ≥ const. 〈X, mX〉,

where

X =
(
‖
√

Sh‖, ‖
√

SCh‖, ‖Ch‖, ‖
√

SAh‖, ‖Ah‖
)
,

m is the 5 × 5 matrix

m =




1 − Mb − Mc −Ma − Mb −Ma − Mb −Mb −Mc
0 a − Mb − Mc −Mb −Mb −Mc
0 0 b − Mc 0 −Mc
0 0 0 c 0
0 0 0 0 c




,

and M is a large number depending on the bounds appearing in the
assumptions of the theorem.

Then by reasoning as in Section 4 and using Lemma A.22, we can
find coefficients a, b, c > 0 and a constant κ > 0 such that

(11.7) − d

2 dt

∣∣∣∣
t=0

F(e−tLh)

≥ κ
(
〈Sh, h〉 + 〈SCh, Ch〉 + ‖Ch‖2 + 〈SAh, Ah〉 + ‖Ah‖2

)
.
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By Assumption (11.1)(ii), this implies the existence of κ′, κ′′ > 0
such that

− d

2 dt

∣∣∣∣
t=0

F(e−tLh) ≥ κ′
(
‖h‖2 + 〈Sh, h〉 + 〈SCh, Ch〉 + ‖Ch‖2

+ 〈SAh, Ah〉 + ‖Ah‖2
)

≥ κ′′F(h).

This concludes the proof. �

12. Simplified theorem and applications

In this section I shall consider a simplified version of Theorem 45.

Corollary 47. Let A = (A1, . . . , Am), B, S be linear operators on
a Hilbert space H, and let C = [A, B]. Assume that

A∗ = −A, B∗ = −B, C∗ = −C, S∗ = S ≥ 0;

[C, A] = 0, [C, B] = 0, [C, S] = 0.

Further assume that there exists κ, c > 0 such that for all h ∈ (Ker A∩
KerB)⊥,

(12.1) 〈Ah, ASh〉 ≥ κ
(
〈SAh, Ah〉 + ‖Ah‖2

)

− c
(
〈Sh, h〉 + 〈SCh, Ch〉 + ‖Ch‖2

)
;

and that

(12.2) S + C∗C is coercive on (KerA ∩ Ker B)⊥.

Then there exists λ > 0 such that

‖e−t(S+B)‖ eH→ eH = O(e−λt),

where H̃ ⊂ (KerL)⊥ is defined by the Hilbert norm

‖h‖2
eH = ‖h‖2 + ‖Ah‖2 + ‖Ch‖2.

Proof of Corollary 47. The assumptions of the theorem triv-
ially imply assumptions (A1)–(A6) from Section 10. Assumption 12.1
is equivalent to the conjunction of (A7) and (11.1)(i). Finally, (12.2)
is obviously stronger than (11.1)(ii). �

Now let us make the link with the Mouhot–Neumann hypocoer-
civity theorem [43, Theorem 1.1]. Although the set of assumptions in
that reference is not exactly the same as in the current section, we shall
see that under a small additional hypothesis, the assumptions in [43]
imply the present ones.
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In [43], the Hilbert space H is L2(Tn
x×Rn

v ), and A = ∇v, B = v·∇x,
C = ∇x; and the operator S only acts on the velocity variable v, so we
have indeed A∗ = −A, B∗ = −B, C∗ = −C, and C commutes with A,
B and S. The kernel of L is similar to the kernel of S (up to identifying
v → h(v) with (x, v) → h(v)), and contains constant functions. Since
C∗C = −∆x has a spectral gap, Condition (12.2) is equivalent to the
fact that S has a spectral gap in L2(Rn

v ), which is Assumption H.3
in [43]. So it only remains to check (12.1), which will be true as soon
as

(12.3) 〈∇vh,∇vSh〉 ≥ κ
(
〈S∇vh,∇vh〉 + ‖∇vh‖2

)
− c‖h‖2.

It is assumed in [43] that S, viewed as an operator on L2(Rn
v ),

can be decomposed into the difference of two self-adjoint operators:
S = Λ − K, where Λ is positive definite and

(12.4) 〈∇vh,∇vΛh〉 ≥ κ〈∇vh, Λ∇vh〉 − c‖h‖2;

(12.5) ∀δ > 0, ∃c(δ) > 0; 〈∇vh,∇vKh〉 ≤ δ‖∇vh‖2 + c(δ)‖h‖2.

Let us further assume that K is compact relatively to Λ, in the sense
that

∀ε > 0, ∃c(ε) > 0; K ≤ εΛ + c(ε)I,

or equivalently (since Λ = S + K)

(12.6) ∀ε > 0, ∃c(ε) > 0; K ≤ εS + c(ε)I.

By using (12.4), (12.5) and (12.6), and denoting by c and κ various
positive constants, one easily obtains

〈∇vh,∇vSh〉 = 〈∇vh,∇vΛh〉 − 〈∇vh,∇vKh〉
≥ κ〈∇vh, Λ∇vh〉 − c‖h‖2 − 〈∇vh,∇vKh〉
≥ κ

(
〈∇vh, Λ∇vh〉 + ‖∇vh‖2

)
− c‖h‖2 − (κ/2)‖∇vh‖2 − c‖h‖2

≥ κ
(
〈∇vh, Λ∇vh〉 + ‖∇vh‖2

)
− c‖h‖2

≥ κ
(
〈∇vh, S∇vh〉 + ‖∇vh‖2

)
− c
(
‖h‖2 + 〈∇vh, K∇vh〉

)

≥ κ
(
〈∇vh, S∇vh〉 + ‖∇vh‖2

)
− c‖h‖2.

This establishes (12.3).
Assumption (12.6) is not made in [43], but it is satisfied in all the

examples discussed therein: linear relaxation, semi-classical relaxation,
linear Fokker–Planck equation, Boltzmann and Landau equations for
hard potentials. So all these examples can be treated by means of
Theorem 47. I refer to [43] for more explanations and results about
all these models. Mouhot and Neumann also use these hypocoercivity
results to construct smooth solutions for the corresponding nonlinear
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models close to equilibrium, thereby simplifying parts of the theory
developed by Guo, see e.g. [28].

13. Discussion and open problems

Although it already applies to a number of interesting models,
Theorem 45 suffers from several shortcomings. Consider for instance
the case when S is a bounded operator (as in, say, the linearized
Boltzmann equation for Maxwellian cross-section), and there is a force
term −∇V (x) · ∇v in the left-hand side of the equation. Then the
higher derivative term in [C, L] is −∇2V (x) · ∇v, which certainly can-
not be bounded in terms of S and C; so Assumption (A2) does not
hold. It is likely that Theorem 45 rarely applies in practice when
[C, B] = [[A, B], B] 6= 0.

Other problems are due to Assumption (A4). This assumption will
not hold for, say, C = ∇x in a bounded domain Ω ⊂ R

n; indeed, in
a slightly informal writing, C∗ = −C + σ · dS, where σ is the outer
unit normal vector on ∂Ω and dS is the surface measure on ∂Ω. So the
computation used in the proof of Theorem 45 does not seem to give
any result in such a situation.

A last indication that Theorem 45 is not fully satisfactory is that it
does not seem to contain Theorem 18 as a particular case, although we
would like to have a unified treatment of the general case L = S + B
and the particular case L = A∗A + B. In fact, as the reader may
have noticed, the choices of coefficients in the auxiliary functionals
appearing respectively in the proof of Theorem 18 and in the proof of
Theorem 45 go in the opposite way!! Indeed, in the first case it was
‖h‖2 + a‖Ah‖2 + 2b〈Ah, Ch〉 + c‖Ch‖2 with a ≫ b ≫ c, while in the
second case it was ‖h‖2 + a‖Ch‖2 + 2b〈Ch, Ah〉 + c‖Ah‖2.

Some playing around with the functionals suggests that these prob-
lems can be solved only if the auxiliary operator A is “comparable” to√

S, say in terms of order of differential operators. So if S is bounded,
then also A should be bounded. This suggests to modify the Mouhot–
Neumann strategy in the case when S is bounded, by choosing, instead
of A = ∇v, something like A = (I − ∆v + v · ∇v)

−1/2∇v. (I wrote
∆v − v · ∇v rather than ∆v, because in many cases the natural ref-
erence measure is the Gaussian measure in Rn

v .) Then computations
involve nonlocal operators and become more intricate. I shall leave the
problem open for future research.





Part III

Fully nonlinear equations



In this part I shall consider possibly nonlinear equations, and I shall
not use “exact” commutator identities. To get significant results un-
der such weak structure assumptions, I shall assume that I deal with
solutions that are very smooth, uniformly in time. Moreover, I shall
only prove results of convergence like O(t−∞), that is, faster than any
inverse power of t.

As in Remark 14, the assumption of uniform smoothness can be
relaxed as long as one has good estimates of exponential decay of sin-
gularities, together with a stability result (solutions depart from each
other no faster than exponentially fast). However, I shall not address
this issue here.

At the level of generality considered here, the rate O(t−∞) can-
not be so much improved, since some cases are included for which
exponential convergence simply does not hold, even for the linearized
equation. In many situations one can still hope for rates of convergence
like O(e−λtγ ), as in the close-to-equilibrium theory of the Boltzmann
equation with soft potentials [29]. If a linearized study suggests con-
vergence like O(e−λt) or O(e−λtγ ) for a particular nonlinear model, then
one can try to obtain this rate of convergence by putting together the
present nonlinear analysis (which applies far from equilibrium) with a
linearization procedure (close to equilibrium) and a subsequent linear
study.

This part is strongly influenced by my collaborations with Laurent
Desvillettes on the convergence to equilibrium for the linear Fokker-
Planck equation [14] and the nonlinear Boltzmann equation [16]. The
method introduced in these papers was based on the study of second-
order time differentiation of certain functionals; since then it has been
successfully applied to other models [9, 22]. Our scheme of proof had
several advantages: It was very general, physically meaningful, and
gave us the intuition for the strong time-oscillations between hydrody-
namic and homogeneous behavior, that were later observed numerically
with a high accuracy [23]. On the other hand, our method had two
major drawbacks: First, the heavy amount of calculations entailed by
the second-order differentiations (especially in the presence of several
conservation laws); and secondly, the particularly tricky analysis of the
resulting coupled systems of second-order differential inequalities.

The approach will I shall adopt in the sequel remedies these draw-
backs: First, it only uses first-order differentiation; secondly, it confines
many heavy computations into a black box that can be used blindly.
The price to pay will be the loss of intuition in the proof.

The main result is a rather abstract theorem stated in Section 14
and proven in Section 15. Then I shall show how to use this abstract
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result on various examples: the compressible Navier–Stokes system
(Section 16); the Vlasov–Fokker–Planck equation with small smooth
coupling (Section 17); and the Boltzmann equation (Section 18).

In the case of the Vlasov–Fokker–Planck equation to be considered,
the coupling is simple enough that all the smoothness bounds appearing
in the assumptions of the main theorem can be proven in terms of just
assumptions on the initial data. In the other cases, the results will be
conditional (depend on the validity of uniform regularity estimates).

The hard core of the proof of the main result was conceived dur-
ing the conference “Advances in Mathematical Physics” in the honor
of Carlo Cercignani (Montecatini, September 2004). It is a pleasure
to thank the organizers of that meeting (Luigi Galgani, Maria Lampis,
Rossanna Marra, Giuseppe Toscani) for helping to create a fruitful and
pleasant atmosphere of work. The main results were first announced
two weeks later, in an incomplete and preliminary form, at the Confer-
ence “Mathematical Aspects of Fluid and Plasma Dynamics” (Kyoto,
September 2004), beautifully organized by Kazuo Aoki. During the
Summer of 2006, for the purpose of various lectures in Porto Ercole,
Trieste and Xining, I rewrote and generalized the main theorem, and
added new applications. Additional thanks are due to Kazuo for an
important remark about the treatment of the Boltzmann equation with
Maxwellian diffusive boundary condition.
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14. Main abstract theorem

The assumptions in this section are expressed in a rather abstract
formalism. “Concrete” examples will be provided later in Sections 16
to 18.

14.1. Assumptions and main result. The theorem below in-
volves five kinds of objects:

- a family of normed spaces (Xs, ‖·‖s)s≥0; the index s can be thought
of as a way to quantify the regularity (smoothness, decay, etc.);

- two “differential” operators B and C, such that B is “conservative”
and C is “dissipative”;

- a “very smooth” solution t → f(t) of the equation

∂tf + Bf = Cf,

with values in a subset X of the intersection of all the spaces Xs;

- a Lyapunov functional E , which is dissipated by the equation
above, and admits a unique absolute minimizer f∞;

- a finite sequence of “nested nonlinear projections” (Πj)1≤j≤J ; one
can think that Πj is the projection onto the space of minimizers of E
under J − j constraints, and in particular ΠJ is the map which takes
everybody to f∞.

The goal is to prove the convergence of f(t) to the stationary state
f∞, and to get estimates on the rate of convergence.

I shall make several assumptions about these various objects. Even
though these assumptions may look a bit lengthy and complicated,
I tend to believe that they are satisfied in many natural cases. The
following notation will be used:

- If A is an operator, then the image of a function f by A will be
denoted either by A(f) or simply by Af .

- The Fréchet derivative of A, evaluated at a function f , will be
denoted by A′(f) or A′

f ; so A′
f · g stands for the Fréchet derivative of

A evaluated at f and applied to the “tangent vector” g.
- The notation ‖A′(f)‖X→Y stands for the norm of the linear op-

erator A′(f) : X → Y , that is the smallest constant C such that
‖A′(f) · g‖Y ≤ C‖g‖X for all g ∈ X.

- Similarly, the second (functional) derivative of A, evaluated at a
function f , will be denoted by A′′(f) or A′′

f ; so A′′
f · (g, h) stands for the

Hessian of A evaluated at f and applied to the two “tangent vectors”
g and h. The notation ‖A′′(f)‖X→Y stands for the smallest constant
C such that ‖A′′(f) · (g, h)‖Y ≤ C‖g‖X‖h‖X for all g, h ∈ X.



14. MAIN ABSTRACT THEOREM 85

Assumption 1 (scale of functional spaces). (Xs, ‖·‖s)s≥0 is a non-
increasing family of Banach spaces such that

(i) X0 is Hilbert; its norm ‖ · ‖0 will be denoted by just ‖ · ‖;
(ii) The injection Xs′ ⊂ Xs is continuous for s′ ≥ s; that is, there

exists C = C(s, s′) such that

(14.1) ‖f‖s ≤ C‖f‖s′;

(iii) The family (Xs)s≥0 is an interpolation family: For any s0, s1 ≥
0 and θ ∈ [0, 1] there is a constant C = C(s0, s1, θ) such that
(14.2)
s = (1 − θ) s0 + θ s1 =⇒ ∀f ∈ Xs0 ∩ Xs1, ‖f‖s ≤ C ‖f‖1−θ

s0
‖f‖θ

s1
.

One may think of s as an index quantifying the regularity of f , say
the number of derivatives which are bounded in a certain norm. In the
sequel, I shall sometimes refer informally to s as an index standing for
a number of derivatives, even if it is not necessarily so in general.

Assumption 2 (workspaces). X and Y are two sets such that X ⊂
Y ⊂ ∩s≥0X

s; moreover, Y is convex and bounded in all spaces Xs.

Assumption 3 (solution). f ∈ C(R+; Xs) ∩ C1((0, +∞); Xs) for
all s; moreover f(t) ∈ X for all t. (In particular f is bounded in all
spaces Xs.)

In the sequel, the notation f0 will be a shorthand for f(0).

Assumption 4 (equation). f solves the equation

(14.3)
∂f

∂t
+ Bf = Cf,

where

(i) B, C are well-defined on Y and valued in a bounded subset of
Xs for all s;

(ii) For any s there is s′ large enough such that B′ is bounded Xs′ →
Xs, uniformly on Y ;

(iii) C is Lipschitz Xs → X0, uniformly on Y , for s large enough.

In short, B and C satisfy a “Lipschitz condition with possible loss of
derivatives”. If Xs is a Sobolev space of order s on a bounded domain,
then any reasonable differential operator of finite order, with smooth
coefficients, will satisfy these assumptions.

Assumption 5 (stationary state). f∞ is an element of X, satisfy-
ing Bf∞ = Cf∞ = 0.
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Assumption 6 (projections). (Πj)1≤j≤J are nonlinear operators
defined on Y , with ΠJ(Y ) = {f∞}. (ΠJ sends everybody to the station-
ary state.) Moreover, for any j ∈ {1, . . . , J},

(i) Πj(X) ⊂ Y , C ◦ Πj = 0;
(ii) Πjf∞ = f∞;
(iii) For any s there is s′ large enough such that (Πj)

′ and (Πj)
′′

are bounded Xs′ → Xs, uniformly on Y .

The last of these assumptions morally says that Πj is C2 with pos-
sible loss of derivatives.

Assumption 7 (Lyapunov functional). E : Y → R is C1 on Y
viewed as a subset of Xs for s large enough. For all f one has E(f) ≥
E(Π1f) ≥ E(f∞), and more precisely

(i) For any ε ∈ (0, 1) there is Kε > 0 such that for all f ∈ Y ,

(14.4) E(f) − E(Π1f) ≥ Kε ‖f − Π1f‖2+ε;

(ii) For any ε ∈ (0, 1) there are Kε, Cε > 0 such that for all f ∈ Y ,

(14.5) Kε ‖Π1f − f∞‖2+ε ≤ E(Π1f) − E(f∞) ≤ Cε ‖Π1f − f∞‖2−ε.

Note that Π1f and f are bounded uniformly, so these bounds be-
come more and more stringent as ε decreases.

Assumption 8 (Key hypocoercivity assumptions).
(i) C alone is dissipative, and strictly so out of the range of Π1: For

any ε > 0 there is a constant Kε > 0 such that for all f ∈ X,

(14.6) −E ′(f) · (Cf) ≥ Kε

[
E(f) − E(Π1f)

]1+ε
;

(ii) C −B is dissipative just as well: For any ε > 0 there is Kε > 0
such that for all f ∈ X,

(14.7) D(f) := −E ′(f) · (Cf − Bf) ≥ Kε

[
E(f) − E(Π1f)

]1+ε
;

(iii) For any k ≤ J−1 and for any ε > 0 there is a constant Kε > 0
such that for all f ∈ X,

(14.8) D(f)+
∑

j≤k

∥∥∥(Id −Πj)
′
Πjf · (BΠjf)

∥∥∥
2

≥ Kε

∥∥(Πk −Πk+1)f
∥∥2+ε

.

Remark 48 (Simplified assumptions). In many cases of applica-
tion, B is conservative, in the very weak sense that E ′(f) · (Bf) = 0;
then Assumption 8(ii) trivially follows from Assumption 8(i). Also
most of the time, Assumption 8(iii) will be replaced by the stronger
property

(14.9)
∥∥∥(Id − Πk)

′
Πkf · (BΠjf)

∥∥∥
2

≥ Kε

∥∥(Πk − Πk+1)f
∥∥2+ε

.
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In the sequel, I shall however discuss an important case (Boltzmann
equation with Maxwellian diffuse boundary condition) where none of
these simplifications holds true.

Remark 49 (Practical verification of the key conditions). Often the
Πj’s are nested projectors, in the sense that Πj+1Πj = Πj+1. Then (14.9)
becomes∥∥∥(Id − Πk)

′
g · (Bg)

∥∥∥
2

≥ Kε

∥∥(Id − Πk+1)g
∥∥2+ε

, g ∈ Πk(X).

So the recipe is as follows: (a) Take g ∈ Πk(X), let it evolve according
to ∂tg + Bg = 0; (b) compute ∂t(Πkg) at t = 0; and (c) check that
‖Bg + ∂t(Πkg)‖ controls ‖g − Πk+1g‖1+ε for any ε > 0.

Remark 50 (Connection with earlier works). To make the connec-
tion with the method used in [16], note that if g = Πkg at t = 0, then,
since ‖ · ‖ is Hilbertian,

∥∥∥(∂t)t=0(gt − Πkgt)
∥∥∥

2

=
d2

dt2

∣∣∣∣
t=0

‖gt − Πkgt‖2.

In view of this remark, Assumption 14.8 can be understood as a very
abstract reformulation of the property of “instability of hydrodynamic
description” introduced in [16].

Now comes the main nonlinear result in this memoir:

Theorem 51. Let Assumptions 1 to 8 be satisfied. Then, for any
β > 0 there is a constant Cβ, only depending on the constants appearing
in these assumptions, on β and on an upper bound on E(f0) − E(f∞),
such that

∀t ≥ 0, E(f(t)) − E(f∞) ≤ Cβ t−β.

As a consequence, for all s ≥ 0,

‖f(t) − f∞‖s = O(t−∞).

14.2. Method of proof. To estimate the speed of approach to
equilibrium, the first natural thing to do is to consider the rate of decay
of the Lyapunov functional E . From the assumptions of Theorem 51,
if ε > 0 is small enough then

(14.10)
d

dt
[E(f) − E(f∞)] = −D(f) ≤ −Kε

[
E(f) − E(Π1f)

]1+ε
.

(I have omitted the explicit dependence of f on t.) But the differential
inequality (14.10) cannot in general be closed, since E(f) − E(Π1f)
might be much smaller than E(f) − E(f∞). It may even be the case
that f = Π1f , yet f 6= f∞ (the dissipation vanishes). So this strategy
seems to be doomed.
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In [14, 16] we solved this difficulty by coupling the differential
inequality (14.10) with some second-order differential inequalities in-
volving other functionals. Here on the contrary, I shall modify the
functional E by adding some “lower-order” terms. So the proofs in the
present paper are based on the following auxiliary functional:

(14.11) L(f) =
[
E(f)−E(f∞)

]
+

J−1∑

j=1

aj

〈
(Id−Πj)f, (Id−Πj)

′
f ·(Bf)

〉
,

where 〈·, ·〉 denotes the scalar product in X0, and aj > 0 (1 ≤ j ≤ J−1)
are carefully chosen small numbers, depending on smoothness bounds
on f , and also on upper and lower bounds on E(f) − E(f∞).

The coefficients aj will be chosen in such a way that L(f) is always
comparable to E(f) − E(f∞); still the time-derivatives of these two
quantities will be very different, and it will be possible to close the
differential inequalities defined in terms of L.

When the value of E(f) − E(f∞) has substantially decreased, then
the expression of L should be re-evaluated (the coefficients aj should be
updated), so L in itself does not really define a Lyapunov functional.
But it will act just the same: On any time-interval where E(f)−E(f∞)
is controlled from above and below, one can choose the coefficients aj

in such a way that (d/dt)L(f) ≤ −KL(f)1+δ, for any fixed δ > 0.
This will be sufficient to control the rate of decay of L to 0, and as a
consequence the rate of decay of E to its minimum value.

Complete proofs will be given in the next section. It is clear that
they enjoy some flexibility and can be slightly modified or adapted in
case of need.

15. Proof of the Main Theorem

Theorem 51 will be obtained as a consequence of the following more
precise result:

Theorem 52. Let Assumptions 1 to 8 be satisfied, and let E > 0
be such that

(15.1)
E

2
≤ E(f) − E(f∞) ≤ E.

Let further

(15.2) L(f) =
[
E(f)−E(f∞)

]
+

J−1∑

j=1

aj

〈
(Id −Πj)f, (Id −Πj)

′
f ·(Bf)

〉
,

where (aj)1≤j≤J−1 are positive numbers; let a0 = 1. Then,
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(i) For any ε ∈ (0, 1), there is a constant K > 0, depending only
on ε and on the constants appearing in Assumptions 1 to 8 (but not on
E) such that if aj ≤ KEε for all j, then

∀f ∈ X,
E

4
≤ L(f) ≤ 5E

4
.

(ii) There are absolute constants ε0, k > 0, and there are constants
K, K ′ > 0, depending only on ε, on an upper bound on E(f) − E(f∞)
and on the constants appearing in Assumptions 1 to 8 such that, if
0 < ε ≤ ε0 and

aj+1 ≤ aj,
a2

j+1

aj

≤ K a1+ε
J−1 Ekε,

for all j ∈ {0, . . . , J − 2}, then

∀f ∈ X, L′(f) · (Cf − Bf) ≤ − aJ−1 K ′ E1+ε.

Remark 53. Lemma A.23 in Appendix A.23 shows that Condi-
tions (i) and (ii) can be fulfilled with aJ−1 ≥ K1E

ℓε, where ℓ only
depends on J and k.

Remark 54. In concrete situations, the explicit form of L might
be extremely complicated. In the case of the Boltzmann equation, to
be considered later on, the formula for L requires eight lines of display.

Before starting the proof of Theorem 52, let me make some remarks
to facilitate its reading. First of all, when uniform bounds in the Xs

spaces are taken for granted, a bound from above by, say, ‖f − f∞‖α
s is

better if the exponent α is higher; this is somewhat contrary to what
one is used to when working on smoothness a priori estimates.

In all the sequel the exponents s, s′ and the constants C, C ′, K,
K ′, etc. may change from one formula to the other. These quantities
can all be computed in terms of an upper bound on E(f0) − E(f∞),
the exponents and constants appearing in Assumptions 1 to 8 (and
for given ε, they only involve a finite number of these constants and
exponents). As a general rule, the symbols C, C ′, etc. will stand for
constants which should be taken large enough, while the symbols K,
K ′, etc. will stand for positive constants which should be taken small
enough.

Finally, I shall frequently use the following fact: If ‖g‖s′ ≤ Cs′ for
all s′ ≥ 0, then for any s and any δ there exists a constant C, only
depending on Cs′ for some s′ large enough, such that

(15.3) ‖g‖s ≤ C‖g‖1−δ
s′ .
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To see this, it suffices to use (14.2) with s0 = 0, s1 = s/δ, θ = δ. In
other words, it is always possible to replace the norm in some Xs by
the norm in any other Xs, up to a arbitrarily small deterioration of the
exponents.

Proof of Theorem 52. To prove (i), it is sufficient to show that
there exists C such that

(15.4)
∣∣∣
〈
(Id − Πj)f, (Id − Πj)

′
f · (Bf)

〉∣∣∣ ≤ C [E(f) − E(f∞)]1−ε

for all f ∈ X. Indeed, it will follow from (15.1) that
∣∣∣
〈
(Id − Πj)f, (Id − Πj)

′
f · (Bf)

〉∣∣∣ ≤ 2εC

Eε
[E(f) − E(f∞)];

then if aj ≤ KEε, the definition of L (formula (15.2)) will imply

(1 − 2εJKC) [E(f) − E(f∞)] ≤ L(f) ≤ (1 + 2εJKC) [E(f) − E(f∞)].

Then the conclusion will be obtained by choosing, say, K = 1/(22+εJC).
(Here C is the same constant as in (15.4).)

To prove (15.4), I shall first apply the Cauchy–Schwarz inequality,
and bound separately ‖(Id − Πj)f‖ and ‖(Id − Πj)

′
f · (Bf)‖.

Bound on ‖(Id − Πj)f‖:
By Assumption 6(ii), f − Πjf = (f − f∞) − (Πjf − Πjf∞), so

‖f − Πjf‖ ≤ ‖f − f∞‖ + ‖Πjf − Πjf∞‖.
By Assumption 6(iii) and the convexity of Y , Πj is Lipschitz Xs → X0

for some s large enough; so

‖Πjf − Πjf∞‖ ≤ C‖f − f∞‖s.

Both f and f∞ belong to Y , so by Assumption 3 they are bounded in
Xs′ for all s′, and we can apply the interpolation inequality (15.3):

‖f − f∞‖s ≤ C‖f − f∞‖1− ε
2 .

Then by Assumption 7(i)-(ii),

‖f − f∞‖1− ε
2 ≤ C[E(f) − E(f∞)]

1
2
− ε

2 .

All in all,

(15.5) ‖f − Πjf‖ ≤ C[E(f) − E(f∞)]
1
2
− ε

2 .

Bound on ‖(Id − Πj)
′
f · (Bf)‖:

By Assumption 6(iii), there are constants C and s such that

‖(Id − Πj)
′
f · (Bf)‖ ≤ C‖Bf‖s.
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By Assumption 4(i), Bf is bounded in all spaces Xs′, so by interpola-
tion,

‖Bf‖s ≤ C‖Bf‖1− ε
4 .

It follows from Assumption 4(ii) and the convexity of Y that B is
Lipschitz Xs → X0 on Y ; in view of Assumption 5 (Bf∞ = 0), this
leads to

‖Bf‖1− ε
4 = ‖Bf − Bf∞‖1− ε

4 ≤ C‖f − f∞‖1− ε
4

s .

The end of the estimate is just as before:

‖f − f∞‖1− ε
4

s ≤ C‖f − f∞‖1− ε
2 ≤ C ′[E(f) − E(f∞)]

1
2
− ε

2 .

All in all,

‖(Id − Πj)
′
f · (Bf)‖ ≤ C [E(f) − E(f∞)]

1
2
− ε

2 .

This combined with (15.5) establishes (15.4).

Now we turn to the proof of (ii), which is considerably more tricky.
Let

(15.6) D̃(f) := −L(f) · (Cf − Bf).

The argument will be divided in three steps.

Step 1: The estimates in this step are mainly based on regularity
assumptions.

By direct computation,

−D̃(f) = −D(f) +

J−1∑

j=1

aj

〈
(Id − Πj)

′
f · (Cf − Bf), (Id − Πj)

′
f · (Bf)

〉

+
J−1∑

j=1

aj

〈
(Id − Πj)f, (Id − Πj)

′′
f · (Cf − Bf, Bf)

〉

+

J−1∑

j=1

aj

〈
(Id − Πj)f, (Id − Πj)

′
f ·
(
B′

f · (Cf − Bf)
)〉
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= −D(f) −
J−1∑

j=1

aj

∥∥(Id − Πj)
′
f · (Bf)

∥∥2

+
J−1∑

j=1

aj

〈
(Id − Πj)

′
f · (Cf), (Id − Πj)

′
f · (Bf)

〉

+

J−1∑

j=1

aj

〈
(Id − Πj)f, (Id − Πj)

′′
f · (Cf − Bf, Bf)

〉

+
J−1∑

j=1

aj

〈
(Id − Πj)f, (Id − Πj)

′
f ·
(
B′

f · (Cf − Bf)
)〉

Then by Cauchy-Schwarz inequality,

−D̃(f) ≤−D(f) −
J−1∑

j=1

aj

∥∥(Id − Πj)
′
f · (Bf)

∥∥2

(15.7)

+

J−1∑

j=1

aj

∥∥(Id − Πj)
′
f · (Cf)

∥∥∥∥(Id − Πj)
′
f · (Bf)

∥∥

+

J−1∑

j=1

aj

∥∥(Id − Πj)f
∥∥∥∥(Id − Πj)

′′
f · (Cf − Bf, Bf)

∥∥

+
J−1∑

j=1

aj

∥∥(Id − Πj)f
∥∥ ∥∥(Id − Πj)

′
f ·
(
B′

f · (Cf − Bf)
)∥∥.

By the inequality ab ≤ (a2 + b2)/2 with a = ‖(Id − Πj)
′
f · (Bf)‖

and b = ‖(Id −Πj)
′
f · (Cf)‖, we see that the second and third terms in

the right-hand side of (15.7) can be bounded by

(15.8) −1

2

J−1∑

j=1

aj

∥∥(Id −Πj)
′
f · (Bf)

∥∥2
+

1

2

J−1∑

j=1

aj

∥∥(Id −Πj)
′
f · (Cf)

∥∥2
.

Then we apply the Hilbertian inequality

−‖a‖2 ≤ − ‖b‖2

2
+ ‖b − a‖2
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with a = (Id−Πj)
′
f ·(Bf) and b = (Id−Πj)

′
Πjf ·(BΠjf), to bound (15.8)

by

− 1

4

J−1∑

j=1

aj

∥∥(Id − Πj)
′
Πjf · (BΠjf)

∥∥2

+
1

2

J−1∑

j=1

aj

∥∥(Id − Πj)
′
Πjf · (BΠjf) − (Id − Πj)

′
f · (Bf)

∥∥2

+
1

2

J−1∑

j=1

aj

∥∥(Id − Πj)
′
f · (Cf)

∥∥2
.

It follows, after plugging these bounds back in (15.7), that
(15.9)

−D̃(f) ≤ −D(f) − 1

4

J−1∑

j=1

aj

∥∥(Id − Πj)
′
Πjf · (BΠjf)

∥∥2
+

J−1∑

j=1

aj (R)j,

where

(R)j :=
1

2

∥∥∥(Id − Πj)
′
Πjf · (BΠjf) − (Id − Πj)

′
f · (Bf)

∥∥∥
2

(15.10)

+
1

2

∥∥(Id − Πj)
′
f · (Cf)

∥∥2

+ ‖(Id − Πj)f‖
(∥∥(Id − Πj)

′′
f · (Cf − Bf, Bf)

∥∥

+
∥∥(Id − Πj)

′
f · (B′

f · (Cf − Bf))
∥∥
)
.

Now I shall estimate the various terms in (15.10) one after the other.

First line of (15.10):

First,

(15.11)
∥∥(Id − Πj)

′
Πjf · (BΠjf) − (Id − Πj)

′
f · (Bf)

∥∥ ≤
∥∥(Id − Πj)

′
Πjf · (Bf − BΠjf)

∥∥+
∥∥[(Πj)

′
Πjf − (Πj)

′
f ] · (Bf)

∥∥.

By Assumption 6(iii),
∥∥(Id − Πj)

′
Πjf · (Bf − BΠjf)

∥∥ ≤ C‖Bf − BΠjf‖s.

(Here I use the fact that Πj(X) ⊂ Y .) Also, from Assumptions 3 and 4
(and again Πj(X) ⊂ Y ), Bf and BΠjf are bounded in all spaces Xs′,
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so by interpolation

‖Bf − BΠjf‖s ≤ C‖Bf − BΠjf‖1− ε
2 .

As a consequence of Assumption 4(ii) and the convexity of Y , B is
Lipschitz continuous Xs → X0 on Y , so

‖Bf − BΠjf‖1− ε
2 ≤ C‖f − Πjf‖

1− ε
2

s ≤ C‖f − Πjf‖1−ε,

where the last inequality is obtained again from interpolation. This
provides a bound for the first term on the right-hand side of (15.11)

Next, as a consequence of Assumption 6(iii), (Πj)
′ is Lipschitz con-

tinuous on Y , in the sense that for all f, g ∈ Y ,
∥∥[(Πj)

′
f − (Πj)

′
g] · h

∥∥ ≤ C‖f − g‖s‖h‖s.

Combining this with Assumption 4, we find
∥∥[(Πj)

′
Πjf − (Πj)

′
f ] · (Bf)

∥∥ ≤ C‖Πjf − f‖s ‖Bf‖s

≤ C ′‖f − Πjf‖s ≤ C ′′‖f − Πjf‖1−ε.

This takes care of the second term on the right-hand side of (15.11).
The conclusion is that the first line of (15.10) is bounded above by
O(‖f − Πjf‖1−ε), for any ε ∈ (0, 1).

Second line of (15.10):

First, by Assumption 6(iii),
∥∥(Id − Πj)

′
f · (Cf)

∥∥ ≤ C‖Cf‖s.

By Assumption 4(i), Cf is bounded in all spaces Xs′, so by interpola-
tion:

‖Cf‖s ≤ C‖Cf‖1− ε
2 .

By Assumption 6(i), CΠjf = 0; and by Assumption 4(iii), C is Lipschitz
Xs → X0 on Y ; so

‖Cf‖1− ε
2 = ‖Cf − CΠjf‖1− ε

2 ≤ C‖f − Πjf‖
1− ε

2
s ≤ C ′‖f − Πjf‖1−ε.

The conclusion is that the second line of (15.10) can be bounded just
as the first line, by O(‖f − Πjf‖1−ε), for any ε ∈ (0, 1).

Third and fourth lines of (15.10):

By Assumption 6(iii),
∥∥(Id−Πj)

′′
f ·(Cf−Bf, Bf)‖ ≤ C‖Cf−Bf‖s ‖Bf‖s ≤ C ′(‖Bf‖2

s+‖Cf‖2
s).

The second term ‖Cf‖2
s can be bounded by O(‖f − Πkf‖2−2ε), as we

already saw; by taking k = J we get a bound like O(‖f − f∞‖2−ε).
As for the first term ‖Bf‖2

s, we saw before that it is also bounded
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like O(‖f − f∞‖2−ε). In the sequel I shall only keep the worse bound
O(‖f − f∞‖1−ε).

Next, by Assumption 6(iii) again,

∥∥(Id − Πj)
′
f · (B′

f · (Cf − Bf))
∥∥ ≤ C‖B′

f · (Cf − Bf)‖s.

From Assumption 4(ii),

‖B′
f · (Cf − Bf)‖s ≤ C‖Cf − Bf‖s′ ≤ C

(
‖Cf‖s′ + ‖Bf‖s′

)
,

and as before this can be controlled by O(‖f − f∞‖1−ε).
The conclusion is that the third and fourth lines of (15.10) can be

bounded by C‖f − Πjf‖ ‖f − f∞‖1−ε, for any ε ∈ (0, 1).

Gathering all these estimates and replacing ε by ε/2, we deduce
that the expression in (15.10) can be bounded as follows:

(R)j ≤ C
(
‖f − Πjf‖2− ε

2 + ‖f − Πjf‖ ‖f − f∞‖1− ε
2

)
.

As we already saw before,

‖f − Πjf‖1− ε
2 ≤ C‖f − f∞‖1−ε,

so actually

(15.12) (R)j ≤ C ‖f − Πjf‖ ‖f − f∞‖1−ε.

The temporary conclusion is that

(15.13) − D̃(f) ≤ −D(f) − 1

4

J−1∑

j=1

aj

∥∥(Id − Πj)
′
Πjf · (BΠjf)

∥∥2

+
(J−1∑

j=1

aj ‖f − Πjf‖
)
‖f − f∞‖1−ε.

Step 2: This step uses Assumption 8 crucially.

By triangle inequality,

‖f − Πjf‖ = ‖Π0f − Πjf‖ ≤
∑

0≤k≤j−1

‖Πkf − Πk+1f‖;
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so

∑

1≤j≤J−1

aj‖f − Πjf‖ ≤
∑

1≤j≤J−1

aj

( ∑

0≤k≤j−1

‖Πkf − Πk+1f‖
)

=
∑

0≤k≤J−2

( ∑

k+1≤j≤J−1

aj

)
‖Πkf − Πk+1f‖

≤
∑

0≤k≤J−2

(Jak+1) ‖Πkf − Πk+1f‖,

where the last inequality is due to the sequence (aj)0≤j≤J−1 being non-
increasing.

Renaming k as j, plugging this inequality back in (15.13), we arrive
at

−D̃(f) ≤ −D(f) − 1

4

∑

0≤j≤J−2

aj

∥∥∥(Id − Πj)
′
Πjf · (BΠjf)

∥∥∥
2

(15.14)

+ C
∑

0≤j≤J−2

aj+1

∥∥Πjf − Πj+1f
∥∥ ‖f − f∞‖1−ε.

Since ak ≤ 1, we can write

D(f) =
D(f)

2
+

1

2(J − 1)

J−1∑

k=1

D(f)(15.15)

≥ D(f)

2
+

1

2(J − 1)

J−1∑

k=1

akD(f).

On the other hand, k ≥ j =⇒ aj ≥ ak, so

J−1∑

j=1

aj

∥∥∥(Id − Πj)
′
Πjf · (BΠjf)

∥∥∥
2

(15.16)

=
1

J − 1

J−1∑

j=1

J−1∑

k=1

aj

∥∥∥(Id − Πj)
′
Πjf · (BΠjf)

∥∥∥
2

≥ 1

J − 1

J−1∑

j=1

J−1∑

k=1

ak

∥∥∥(Id − Πj)
′
Πjf · (BΠjf)

∥∥∥
2

.
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From (15.14), (15.15) and (15.16),

−D̃(f) ≤ −D(f)

2

− 1

4(J − 1)

J−1∑

k=1

ak

(
D(f) +

k∑

j=1

∥∥∥(Id − Πj)
′
Πjf · (BΠjf)

∥∥∥
2)

+ C

J−2∑

j=0

aj+1

∥∥Πjf − Πj+1f
∥∥ ‖f − f∞‖1−ε.

At this point we can apply Assumption 8(ii)-(iii) and Assumption 7
and we get constants K, C such that

−D̃(f) ≤− K
(
[E(f) − E(Π1f)]1+

ε
4 + ‖f − Π1f‖2+ε

)
(15.17)

− K
J−1∑

k=1

ak ‖Πkf − Πk+1f‖2+ε

+ C
J−2∑

j=0

aj+1 ‖Πjf − Πj+1f‖ ‖f − f∞‖1−ε.

By applying Young’s inequality, in the form

aXY 1−ε ≤ b
X2+ε

2 + ε
+

(
a

2+ε
1+ε

b
1

1+ε

)
(Y 1−ε)(

2+ε
1+ε)

(
2+ε
1+ε

) ,

with a = aj+1, X = ‖Πjf − Πj+1f‖, Y = ‖f − f∞‖, b = Kaj in the
last line of (15.17), we get

−D̃(f) ≤− K[E(f) − E(Π1f)]1+
ε
4 − K‖f − Π1f‖2+ε(15.18)

− K

J−1∑

j=1

aj‖Πjf − Πj+1f‖2+ε

+ C
∑

0≤j≤J−2

(
a2+ε

j+1

aj

) 1
1+ε

‖f − f∞‖
(1−ε)(2+ε)

1+ε .

Since aj+1 ≤ 1, we can bound trivially a2+ε
j+1 by a2

j+1. Moreover, for
ε ≤ ε0 small enough, we have (1 − ε)(2 + ε)/(1 + ε) ≥ 2 − 4ε and, so

‖f − f∞‖
(1−ε)(2+ε)

1+ε ≤ C‖f − f∞‖2−4ε.
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Taking into account once again the fact that aj ≥ aJ−1 for all j, (15.18)
implies, with the convention Π0f = f , a0 = 1,

−D̃(f) ≤− K[E(f) − E(Π1f)]1+
ε
4(15.19)

− KaJ−1

(
∑

0≤j≤J−1

‖Πjf − Πj+1f‖2+ε

)

+ C sup
0≤j≤J−2

(
a2

j+1

aj

) 1
1+ε

‖f − f∞‖2−4ε.

Next,

‖f − f∞‖2+ε = ‖Π0f − ΠJf‖2+ε ≤ C
∑

0≤j≤J−1

‖Πjf − Πj+1f‖2+ε,

so from (15.19) we deduce

(15.20) − D̃(f) ≤ −K[E(f) − E(Π1f)]1+
ε
4 − K aJ−1‖f − f∞‖2+ε

+ C sup
0≤j≤J−2

(
a2

j+1

aj

) 1
1+ε

‖f − f∞‖2−4ε.

Step 3: Now a few complications will arise because we only have a
control from below of E(f) − E(f∞) in terms of ‖f − f∞‖; so the fact
that E(f) − E(f∞) is of order E does not imply any lower bound on
‖f − f∞‖, and then ‖f − f∞‖2−4ε might be much, much higher than
‖f − f∞‖2+ε. To solve this difficulty, a small additional detour will be
useful.

From Assumption 6(ii)-(iii) and interpolation,

(15.21) ‖Π1f − f∞‖2+2ε = ‖Π1f − Π1f∞‖2+2ε ≤ C‖f − f∞‖2+ε;

on the other hand,

(15.22) ‖f − f∞‖2−4ε ≤ C
(
‖f − Π1f‖2−4ε + ‖Π1f − f∞‖2−4ε

)
.

By using (15.21) and (15.22) in (15.19), and replacing the exponent
1 + ε/4 by the worse exponent 1 + 2ε (which is allowed since E(f) −
E(Π1f) ≤ E(f) − E(f∞) is uniformly bounded), we obtain

(15.23) − D̃(f) ≤ −K[E(f) − E(Π1f)]1+2ε − K aJ−1‖Π1f − f∞‖2+2ε

+ Cδ
1

1+ε

(
‖f − Π1f‖2−4ε + ‖Π1f − f∞‖2−4ε

)
,

where

δ := max
0≤j≤J−1

a2
j+1

aj
.
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Then from Assumption (7)(i)-(ii) (both the upper and the lower
bounds are used in (ii)),

(15.24)

− D̃(f) ≤ −K[E(f) − E(Π1f)]1+2ε − K aJ−1[E(Π1f) − E(f∞)]1+2ε

+ Cδ
1

1+ε [E(f) − E(Π1f)]1−3ε + Cδ
1

1+ε [E(Π1f) − E(f∞)]1−3ε.

Let us distinguish two cases:

First case: E(Π1f) − E(f∞) ≤ E(f) − E(Π1f).

Then

E(f) − E(f∞) ≤ 2[E(f) − E(Π1f)],

and in particular

(15.25) E(f) − E(Π1f) ≥ E

4
.

In that case we throw away the second negative term in (15.24), and
bound the last term by the but-to-last one:

−D̃(f) ≤ −K[E(f) − E(Π1f)]1+2ε + Cδ
1

1+ε [E(f) − E(Π1f)]1−3ε

= −K

(
1 − Cδ

1
1+ε

K
[E(f) − E(Π1f)]−5ε

)
[E(f) − E(Π1f)]1+2ε.

(15.26)

If

(15.27) δ
1

1+ε ≤ K

2C

[
E(f) − E(Π1f)

]5ε

(where K and C are the same constants as in (15.26)), then (15.26)
can be bounded above by −K ′[E(f)−E(Π1f)]1+2ε, and by (15.25) this
can also be bounded above by −K ′′E1+2ε.

Finally, in view of (15.25) again, (15.27) is satisfied if

(15.28) δ
1

1+ε ≤ K ′E5ε,

where K ′ = 4−5εK/(2C). Since ε ≤ 1 and E is uniformly bounded, a
sufficient condition for (15.28) to hold is δ ≤ K ′′E10ε.

Second case: E(Π1f) − E(f∞) ≥ E(f) − E(Π1f). In that case

(15.29) E(Π1f) − E(f∞) ≥ E

4
,

and we retain from (15.24) that

−D̃(f) ≤ −K aJ−1[E(Π1f)−E(f∞)]1+2ε +Cδ
1

1+ε

[
E(Π1f)−E(f∞)

]1−3ε
;
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and by a reasoning similar as the one above, this is bounded above by

− K

2
aJ−1

[
E(Π1f) − E(f∞)

]1+2ε

as soon as

δ
1

1+ε ≤ K ′aJ−1E
5ε.

This condition is fulfilled as soon as

δ ≤ K ′′a1+ε
J−1E

10ε,

and, a fortiori (since aJ−1 ≤ 1) if

δ ≤ K ′′′a1+2ε
J−1 E10ε.

In both cases, we have concluded that if ε ≤ ε0 and

a2
j+1

aj
≤ Ka1+2ε

J−1 E10ε,

then

−D̃(f) = L′(f) · (Cf − Bf) ≤ −K ′aJ−1 E1+2ε.

Up to the replacement of ε by ε/2 and ε0 by ε0/2, this is exactly the
desired conclusion. �

Proof of Theorem 51. Let E be such that E(f0)−E(f∞) ≤ E.
Since E(f(t)) is a nonincreasing function of t,

∀t ≥ 0, E(f(t)) − E(f∞) ≤ E.

Let now ε > 0, and E ∈ (0, E]. Let [t0, t0 + T ] be the time-interval
where

E

2
≤ E(f(t)) − E(f∞) ≤ E;

this time-interval is well-defined (at least if T is a priori allowed to be
infinite) since E(f(t)) − E(f∞) is a continuous nonincreasing function.
The goal is to show that if ε is small enough, then

(15.30) T ≤ CE−λε,

where λ only depends on J , and C may depend on ε but not on E.
When (15.30) is proven, it will follow from a classical argument that

(15.31) E(f(t)) − E(f∞) = O(t−1/((λ+1)ε)).
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Indeed, let E0 := E(f0)−E(f∞); then E(f(t))−E(f∞) will be bounded
by E0/2m+1 after a time

Tm :=C
(
E−λε

0 +

(
E0

2

)−λε

+

(
E0

4

)−λε

+ . . . +

(
E0

2m

)−λε)

≤ C
( m∑

j=0

2λjε
)
E−λε

0 ≤ C ′2λmεE−λε
0 .

So E(f(t)) − E(f∞) = O(2−(m+1)) after a time proportional to 2λmε,
and (15.31) follows immediately.

Then E(f(t)) − E(f∞) = O(t−∞) since ε can be chosen arbitrarily
small and λ does not depend on ε. From Assumption 7(i)-(ii),

‖f(t) − f∞‖ ≤ C[E(f(t)) − E(f∞)]1/3

(here 1/3 could be 1/2 − ε), so ‖f(t) − f∞‖ = O(t−∞) also. Finally,
since f(t) is bounded in all spaces Xs by Assumption 3, it follows by
interpolation that ‖f(t) − f∞‖s = O(t−∞) for any s > 0.

So it all amounts to proving (15.30). Let K, K ′, k, ε0 be provided
by Theorem 52. (There is no loss of generality in taking the constants
K appearing in (i) and (ii) to be equal.) Let then ε1, K1, ℓ be provided
by Lemma A.23. For any ε ≤ min(ε0, ε1) and any t ∈ [t0, t0 + T ] we
have

E

4
≤ L(f(t)) ≤ 5E

4
;

d

dt

[
L(f(t))

]
≤ −K ′aJ−1E

1+ε ≤ −K ′K1E
1+(ℓ+1)ε.

So
E ≥ L(f(t0)) − L(f(t0 + T )) ≥ T K ′K1 E1+(ℓ+1)ε,

and then (15.30) follows with λ = ℓ+1 (which eventually depends only
on J). �

16. Compressible Navier–Stokes system

In this section I start to show how to apply Theorem 51 on “con-
crete” examples.

The compressible Navier–Stokes equations take the general form

(16.1)





∂tρ + ∇ · (ρu) = 0

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = ∇ · τ
∂t(ρe) + ∇ · (ρeu + pu) = ∇ · (τu) −∇ · q

where ρ is the density, u (vector-valued) is the velocity, e is the energy,
q (vector-valued) is the heat flux, and τ (matrix-valued) is the viscous
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stress. In the case of perfect gases in dimension N , it is natural to use
the following constitutive laws:

(16.2)





p = ρT

e =
|u|2
2

+
N

2
T

τ = 2µ {∇u}

q = −N

2
κ∇T,

where T is the temperature, µ is the viscosity, κ is the heat conductivity,
and {∇u} (matrix-valued) is the traceless symmetric strain:

{∇u}ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
−
(∇ · u

N

)
δij ,

and δij = 1i=j. Then (16.1) takes the form
(16.3)



∂tρ + ∇ · (ρu) = 0;

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇(ρT ) = 2µ∇ · {∇u};

∂t

(
ρ
|u|2
2

+
N

2
ρT

)
+ ∇ ·

(
ρ
|u|2
2

u +

(
N + 2

2

)
ρuT

)

= 2µ∇ · (u{∇u}) + N
2

κ∆T.

(Note that

∇ · {∇u} = µ∆u + µ

(
1 − 2

N

)
∇∇ · u,

so in the case considered here, the second Lamé coefficient is negative
and equal to −(2/N)µ, which is the borderline case.)

To avoid discussing boundary conditions I shall only consider the
case when x varies in the torus TN . (Later on, for the Boltzmann
equation we’ll come to grips with boundary conditions a bit more.)

There are N + 2 conservation laws for (16.1): total mass, total
momentum (N scalar quantities) and total kinetic energy. Without
loss of generality I shall assume

(16.4)

∫
ρ = 1;

∫
ρu = 0;

∫
ρ
|u|2
2

+
N

2

∫
ρT =

N

2
.
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There is an obvious stationary state: (ρ, u, T ) ≡ (1, 0, 1). The goal
of this section is the following conditional nonlinear stability result.
The notation Ck stands for the usual space of functions whose deriva-
tives up to order k are bounded.

Theorem 55 (Conditional convergence for compressible Navier–S-
tokes). Let t → f(t) = (ρ(t), u(t), T (t)) be a C∞ solution of (16.3),
satisfying the uniform bounds
(16.5){

∀k ∈ N supt≥0

(
‖ρ(t)‖Ck + ‖u(t)‖Ck + ‖T (t)‖Ck

)
< +∞;

∀t ≥ 0, ρ(t) ≥ ρm > 0; T (t) ≥ Tm > 0.

Then ‖f(t) − (1, 0, 1)‖Ck = O(t−∞) for all k.

Proof of Theorem 55. Let us check that all assumptions of The-
orem 51 are satisfied. Assumption 1 is satisfied with, say, Xs =
Hs(TN ; R×R

N ×R), where Hs stands for the usual L2-Sobolev space
of functions with s derivatives in L2. To fulfill Assumption 2, define
Cs := sup{‖f(t)‖Hs; t ≥ 0} and let

X = Y :=
{

f ∈ C∞(TN ; R × R
N × R); ∀s, ‖f‖s ≤ Cs;

ρ ≥ ρm; T ≥ Tm

}
.

(Note that necessarily ρm ≤ 1, Tm ≤ 1.)
To check Assumption 3, rewrite (16.3) in the nonconservative form

(16.6)





(∂t + u · ∇)ρ + ρ(∇ · u) = 0

(∂t + u · ∇)u + ∇T + T

(∇ρ

ρ

)
=

2µ

ρ
∇ · {∇u}

(∂t + u · ∇)T +
2

N
T (∇ · u) =

4

N

µ

ρ
|{∇u}|2 +

κ

ρ
∆T,

and define
(16.7)

Bf =
(
u ·∇ρ+ρ(∇·u), u ·∇u+∇T +T∇(log ρ), u ·∇T +

2

N
T (∇·u)

)
;

(16.8) Cf =
(
0,

2µ

ρ
∇ · {∇u}, 4

N

µ

ρ
|{∇u}|2 +

κ

ρ
∆T
)
.

Then (3) obviously holds true.
Assumption 4 is satisfied with f∞ = (1, 0, 1).
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As usual in the theory of viscous compressible flows, an important
difficulty to overcome is the fact that diffusion does not act on the ρ
variable. So let Π1 = Π be defined by

Π(ρ, u, T ) = (ρ, 0, 1).

Assumption 6 is obviously satisfied with this choice of nonlinear pro-
jection.

Next, let E be the negative of the usual entropy for perfect fluids:

E(ρ, u, T ) =

∫
ρ log ρ − N

2

∫
ρ log T.

Taking into account (16.4),

E(ρ, u, T ) − E(1, 0, 1) =

∫
ρ log ρ +

∫
ρ
|u|2
2

+
N

2

∫
ρ(T − log T − 1);

E(ρ, u, T )− E(Π(ρ, u, T )) =

∫
ρ
|u|2
2

+
N

2

∫
ρ(T − log T − 1).

Thanks to the uniform bounds from above and below on ρ and T ,
E(f)−E(f∞) controls ‖f−f∞‖2 from above, and E(f)−E(Πf) controls
‖f − Πf‖2 from above and below; so Assumption 7 is satisfied.

It only remains to check Assumption 8. By a classical computation,
for any f ∈ Y ,

E ′(f) · (Cf) = −
(

2µ

∫ |{∇u}|2
T

+ κ

∫ |∇T |2
T 2

)

≤ −K

(∫
|{∇u}|2 +

∫
ρ|∇T |2

)
,

where the last inequality follows again from the lower bound on T and
the upper bound on ρ.

By Poincaré inequality,
∫

ρ|∇T |2 controls
∫

ρ(T − 〈T 〉ρ)2, where
〈T 〉ρ =

∫
ρT is the average of T with respect to ρ. In turn, this

controls ‖T − 1‖2 − 2(〈T 〉ρ − 1)2. Since 〈T 〉ρ − 1 = (−1/N)
∫

ρ|u|2, we
conclude that there are positive constants K and C such that∫

ρ|∇T |2 ≥ K‖T − 1‖2 − C‖u‖2

for all f ∈ Y . On the other hand, by [16, Proposition 11],
∫

|{∇u}|2 ≥ K ′‖u‖2.

All in all, there is a positive constant K such that∫
|{∇u}|2 +

∫
ρ|∇T |2 ≥ K

(
‖T − 1‖2 + ‖u‖2

)
= K‖f − Πf‖2,
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so Assumption 8(i) holds true.
By another classical computation, E ′(f) · (Bf) = 0, so Assump-

tion 8(ii) also holds true.
On the range of Π, the functional derivative Π′ vanishes (because

∂tρ = 0 when u = 0), and B(ρ, u, T ) = (0,−∇ log ρ, 0). Then

(Id − Π)′Πf · (BΠf) = BΠf = (0,−∇ log ρ, 0).

Thus
∥∥∥(Id − Π)′Πf · (BΠf)

∥∥∥
2

=

∫
|∇(log ρ)|2,

which under our assumptions controls
∫
|∇ρ|2, and then by Poincaré in-

equality also ‖ρ−1‖2 = ‖Πf−f∞‖2. This establishes Assumption 8(iii),
and then the conclusion of the theorem follows from Theorem 51. �

17. Weakly self-consistent Vlasov–Fokker–Planck equation

One of the final goals of the theory which I have been trying to
start in this memoir is the convergence to equilibrium for the nonlinear
Vlasov–Poisson–Fokker–Planck equation with an external confinement.
This kinetic model, of great importance in plasma physics, describes
the evolution of a cloud of charged particles undergoing deterministic
and random (white noise) forcing, friction, and influencing each other
by means of Coulomb interaction.

Besides the fact that the regularity theory of the Vlasov–Poisson–
Fokker–Planck equation is still at an early stage (to say the least),
one meets serious difficulties when trying to apply Theorem 51 to this
model, in particular because the problem is set in the whole space.
So for the moment I shall be content to treat a simpler baby problem
where (a) the confining potential is replaced by a periodic boundary
condition; (b) the Coulomb interaction potential is replaced by a small
and smooth potential. The smallness assumption is not only a techni-
cal simplification: It will prevent phase transition and guarantee the
uniqueness of equilibrium state.

Even with these simplifications, the problem of convergence to equi-
librium is nontrivial because the model is nonlinear and the diffusion
only acts on the velocity variable. This will be a perfect example of
application of Theorem 51.

Here the unknown f = f(t, x, v) is a time-dependent probability
density in phase space (x ∈ T

N stands for position and v ∈ R
N for
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velocity). The equation reads

(17.1)






∂tf + v · ∇xf + F [f ](t, x) · ∇vf = ∆vf + ∇v · (fv)

F [f ](t, x) = −
∫

∇W (x − y) f(t, y, w) dwdy.

Here W ∈ C∞(TN) is even (W (−z) = W (z)), and without loss of
generality

∫
W = 0. As we shall see later, if W is small enough in a

suitable sense then the unique equilibrium for (17.1) is the Maxwellian
with constant density:

f∞(x, v) = M(v) =
e−

|v|2

2

(2π)N/2
.

Since the total mass
∫

f(t, x, v) dv dx is preserved with time, there
is an a priori estimate on the force, like ‖F‖Ck ≤ Ck‖W‖Ck; so there
is no real difficulty in adapting the proofs of regularity for the linear
kinetic Fokker–Planck equation (see Appendix A.21). In this way one
can establish the existence and uniqueness of a solution as soon as,
say, the initial datum has finite moments of arbitrary order; and this
solution will be smooth for positive times.

The goal of this section is to establish the following convergence
result:

Theorem 56 (Large-time behavior of the weakly self-consistent
Vlasov–Fokker–Planck equation). Let W ∈ C∞(TN ) satisfy

∫
W =

0. Let f0 = f0(x, v) be a probability density on T
N × R

N , such that∫
f0(x, v)|v|k dv dx < +∞ for all k ∈ N, and let f = f(t, x, v) be the

unique smooth solution of (17.1). Let δ be so small that

δ +
δ2 eδ

2
<

1

2
.

If max |W | < δ then

‖f(t, ·) − M‖L1 = O(t−∞).

Remark 57. It is not hard to show that the conclusion of The-
orem 56 does not hold true without any size condition on W , since
in general (17.1) can admit several stationary states. In the proof of
Theorem 56 I shall show that there is only one stationary state as soon
as max |W | < 1; I don’t know how good this bound is. The assump-
tions of the theorem are satisfied with δ = 0.38, which does leave some
margin of improvement.
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Proof of Theorem 56. The first step consists in establishing
uniform regularity estimates; I shall only sketch them very briefly.

First, one establishes differential inequalities on the “regularized”
moments Mk(t) =

∫
f(t, x, v)(1 + |v|2)k/2 dv dx:

dMk

dt
≤ CMk−1 − KMk,

where C and K are positive constants. (Here the fact that the position
space is TN induces a considerable simplifcation.) Then one deduces
easily that each moment

∫
f |v|k remains bounded uniformly in time.

Next, by adapting the arguments in Appendix A.21, one can prove
uniform Sobolev estimates of the form

∀k ∈ N, ∀t0 > 0, sup
t≥t0

‖f(t, ·)‖Hk < +∞.

These bounds, combined with the moment estimates, imply the bound-
edness of the solution f(t, ·) in all spaces Xs, where Xk is defined for
k ∈ N by

(17.2) ‖f‖2
Xk =

∑

|ℓ|+|m|≤k

∫ ∣∣∇k
x∇m

v f(x, v)
∣∣2 (1 + |v|2)k dv dx.

and Xs is defined by interpolation for noninteger s. It is easy to check
that these spaces satisfy Assumption 1.

Next, hypoellipticity theory classically provides local strict posi-
tivity bounds on f(t, x, v) for t ≥ t0 > 0. (An elementary method
covering our needs is described in Appendix A.22; see Corollary A.21.)
We deduce that ρ(t, x) =

∫
f(t, x, v) dv is bounded below by a positive

constant, uniformly in t ≥ t0. (Note: Once the local bounds are ob-
tained, using a maximum principle method as in [13, Section 10] one
can turn these bounds into global bounds f(t, x, v) ≥ K e−a|v|2 ; but we
do not need such a refinement.)

Up to changing the origin of time, we can now assume that f is
uniformly bounded in all spaces Xs and that ρ satisfies a uniform lower
bound. This determines a workspace

X = Y :=
{
f ; ∀s ‖f‖Xs ≤ Cs; ρ ≥ ρm > 0

}
,

as in Assumption 2.
Then we define

Bf = v · ∇xf + F [f ] · ∇vf ; Cf = ∆vf + ∇v · (fv);

f∞ = M(v); Π1(f) = Π(f) = ρM, ρ =

∫
f dv.

Assumptions 3, 4, 5 and 6 are readily checked.
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Next let the free energy functional E be defined by

E(f) =

∫
f log f dv dx+

∫
f
|v|2
2

dv dx+
1

2

∫
ρ(x) ρ(y) W (x−y) dx dy.

By standard manipulations,

(17.3) E(f) − E(Πf) =

∫

TN×RN

f log
f

ρM
;

(17.4) E(Πf)−E(f∞) =

∫

TN

ρ log ρ+
1

2

∫

TN

ρ(x) ρ(y) W (x− y) dx dy.

The Csiszár–Kullback–Pinsker inequality implies the lower bound
E(f)−E(Π1f) ≥ (1/2)‖f−ρM‖2

L1 ; then by interpolation of L2 between
L1 and Hk (as in [16, Lemma 10]), one deduces

E(f) − E(Πf) ≥ 1

2
‖f − ρM‖2

L1 ≥ K ‖f − ρM‖−θ
Hk‖f − ρM‖2+θ

L2 ,

where θ is arbitrarily small if k is chosen large enough. This shows that
Assumption 7(i) is satisfied.

On the other hand, since
∫

W = 0,

E(Πf) − E(f∞) =

∫
ρ log ρ +

1

2

∫
[ρ(x) − 1] [ρ(y) − 1] W (x− y) dx dy

≥ 1

2
‖ρ − 1‖2

L1 − 1

2
(max |W |) ‖ρ− 1‖2

L1.

By assumption, max |W | < 1; so there is a constant K > 0 such that

E(Πf) − E(f∞) ≥ K‖ρ − 1‖2
L1.

By interpolation again, this can be controlled from below by ‖ρ−1‖2+ε
L2

for arbitrarily small ε, and the left inequality in Assumption 7(ii) is
satisfied. (This is the first time that we use the smallness assumption
on W .) The right inequality in Assumption 7(ii) is easy.

By classical computations (see e.g. [14, Section 2]),

−E ′(f)·(Cf) =

∫
f

∣∣∣∣∇v log
f

ρM

∣∣∣∣
2

dv dx ≥ 2

∫
f log

f

ρM
≥ 1

2
‖f−ρM‖2

L1 ,

so there is no difficulty to establish Assumption 8(i). Assumption 8(ii)
follows immediately since E ′(f) · (Bf) = 0. So it only remains to
establish Assumption 8(iii).

As in the example of the compressible Navier–Stokes system, the
functional derivative Π′ vanishes on the range of Π, so

(Id − Π)′Πf · (BΠf) = BΠf = v · ∇x(ρM) − (∇W ∗ ρ) · ∇v(ρM)

= v ·
(
∇ρ + ρ∇(W ∗ ρ)

)
M.
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Then

∥∥∥(Id − Π)′Πf · (BΠf)
∥∥∥

2

=

∫ ∣∣∣v ·
(
∇ρ + ρ∇(W ∗ ρ)

)∣∣∣
2

M(v)2 dv dx

= K

∫ ∣∣∣∇ρ + ρ∇(ρ ∗ W )
)∣∣∣

2

dx

≥ K

∫
ρ

∣∣∣∣
∇ρ

ρ
+ ∇(ρ ∗ W )

∣∣∣∣
2

dx,

where K stands for various positive constants, and the lower bound on
ρ was used in the last inequality. Let

µ(x) :=
e−(ρ∗W )(x)

∫
e−(ρ∗W )

.

Since µ is uniformly bounded from above and below, we can use a
logarithmic Sobolev inequality with reference measure µ(x) dx; so there
is a positive constant K such that

∫
ρ

∣∣∣∣
∇ρ

ρ
+ ρ ∗ W

∣∣∣∣
2

dx =

∫
ρ

∣∣∣∣∇ log
ρ

µ

∣∣∣∣
2

dx

≥ K

∫
ρ log

ρ

µ
dx

= K

(∫
ρ log ρ +

∫
ρ(ρ ∗ W ) + log

∫
e−W∗ρ

)
.(17.5)

By assumption, max |W | ≤ δ; so |W ∗ ρ| ≤ δ, and

∣∣∣e−W∗ρ −
(
1 − W ∗ ρ

)∣∣∣ ≤ eδ (W ∗ ρ)2

2
= eδ [W ∗ (ρ − 1)]2

2

≤ eδ(max |W |)2

2
‖ρ − 1‖2

L1 ≤
δ2eδ

2
‖ρ − 1‖2

L1.

Since
∫

(W ∗ ρ) = 0, it follows by integration of this bound that

∣∣∣∣
∫

e−W∗ρ − 1

∣∣∣∣ ≤
δ2eδ

2
‖ρ − 1‖2

L1.

As a consequence,

∣∣∣∣log

(∫
e−W∗ρ

)∣∣∣∣ ≤
δ2eδ

2
‖ρ − 1‖2

L1.
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From this bound and the inequality |
∫

ρ(ρ ∗ W )| ≤ δ‖ρ − 1‖2
L1 again,

we obtain
∫

ρ log ρ +

∫
ρ(ρ ∗ W ) + log

∫
e−W∗ρ

≥ ‖ρ − 1‖2
L1

2
− δ‖ρ − 1‖2

L1 − δ2eδ

2
‖ρ − 1‖2

L1

≥
(

1

2
− δ − δ2eδ

2

)
‖ρ − 1‖2

L1 .

By assumption the coefficient in front of ‖ρ−1‖2
L1 is positive, and then

we can use interpolation again to get
∫

ρ log ρ +

∫
ρ(ρ∗W )+log

∫
e−W∗ρ ≥ Kε‖ρ−1‖2+ε

L2 = Kε‖ρM−M‖2+ε
L2 .

So Assumption 8(iii) holds. (Here again the smallness condition was
crucially used.) Then all the assumptions of Theorem 51 are satisfied,
and the conclusion follows at once. �

18. Boltzmann equation

This last section is devoted to the Boltzmann equation; see [57]
and the references therein for background and references on this model.
I have personally devoted a considerable amount of research time on
the problem of convergence to equilibrium for the Boltzmann equation,
alone or in collaborations with Toscani and Desvillettes; a detailed
account of this topic can be found in my lecture notes [56].

As in Section 17 the unknown is a time-dependent probability den-
sity f = f(t, x, v) on the phase space. The variable x will be assumed
to vary in a bounded N -dimensional domain Ωx, that will be either
the torus TN , or a smooth bounded connected open subset of RN . The
equation reads
(18.1)



∂f

∂t
+ v · ∇xf = Q(f, f)

=

∫

RN×SN−1

[
f(x, v′)f(x, v′

∗) − f(x, v)f(x, v∗)
]
B(v − v∗, σ) dσ dv∗

v′ =
v + v∗

2
+

|v − v∗|
2

σ; v′
∗ =

v + v∗
2

− |v − v∗|
2

σ.

Here B is the collision kernel; for simplicity I shall restrict to the
case B = |v − v∗| (hard spheres interaction), but the analysis works as
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soon as Assumptions (5) and (19) in [16] are satisfied, which covers all
physically relevant cases that I know of.

Three kinds of estimates play an important role in the modern
theory of the Boltzmann equation: Sobolev estimates (in x and v vari-
ables), moment estimates and positivity estimates of the form f ≥
K0e

−A0|v|q0 . At least in some cases, the positivity estimates follow from
regularity estimates [42], but I shall not address this issue here.

To continue the discussion it is necessary to take boundary con-
ditions into account. I shall consider five cases: (i) periodic bound-
ary conditions; (ii) bounce-back boundary conditions; (iii) specular
reflection in a nonaxisymmetric domain; (iv) specular reflection in a
spherically symmetric domain; (v) Maxwellian accommodation with
constant wall temperature. Cases (i) to (iii) were already considered
in [16], while cases (iv) and (v) are new and will be the occasion of in-
teresting developments. Specular reflection in a general axisymmetric
domain (not spherically symmetric) is intermediate between cases (iii)
and (iv) and can probably be treated as a variant, but I have not tried
to do so. Other conditions could be treated as a variant of (v), such as
more general accommodation kernels, but they do not seem to cause
any substantial additional difficulty. On the other hand, the techniques
presented here are helpless to treat accommodation with variable wall
temperature, for which the collision operator does not vanish; I shall
add a few words about this issue in the end of the section.

18.1. Periodic boundary conditions. In this subsection I shall
consider the Boltzmann equation (18.1) in the position space Ωx = TN

(the N -dimensional torus). Then there are N + 2 conservation laws:
total mass, total momentum (N components) and total kinetic energy.
Without loss of generality, I shall assume

(18.2)

∫
f dv dx = 1;

∫
fv dv dx = 0;

∫
f |v|2 dv dx = N.

Then the equilibrium state takes the form

f∞(x, v) = M(v) =
e−

|v|2

2

(2π)N/2
.

Our goal is the next convergence theorem:

Theorem 58 (Convergence to equilibrium for the Boltzmann equa-
tion with periodic boundary conditions). Let f be a solution of (18.1)
in the spatial domain Ωx = T

N , satisfying the conservation laws (18.2),
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and the uniform regularity estimates

(18.3)





∀s ≥ 0 sup
t≥0

‖f(t, ·)‖Hs(Ωx×RN
v ) < +∞;

∀k ≥ 0 sup
t≥0

∫
f(t, x, v) |v|k dv dx < +∞;

∀(t, x, v) ∈ R+ × Ωx × R
N
v , f(t, x, v) ≥ K0 e−A0|v|q0 .

Then

∀s ≥ 0,
∥∥f(t, ·) − M

∥∥
Hs = O(t−∞).

Remark 59. This theorem is nonempty, in the sense that, when f0

is very smooth and close to equilibrium in a suitable sense, then (18.3)
holds true. See the discussion in [16] for more information.

Proof of Theorem 58. Let f satisfy the assumptions of The-
orem 58. Let (Xs)s≥0 be the scale of weighted Sobolev spaces al-
ready defined in the treatment of the Vlasov–Fokker–Planck equa-
tion (recall equation (17.2)). It follows from the assumptions that
Cs := supt≥0 ‖f‖s is finite for all s. We shall work in the spaces

X :=
{

f ; ‖f‖s ≤ Cs; f(x, v) ≥ K0 e−A0|v|q0
}

,

Y :=
{

f ; ‖f‖s ≤ C ′
s; f(x, v) ≥ K ′

0 e−A0|v|q0
}
,

where C ′
s, K ′

0 will be determined later on. Then Assumptions 1, 2
and 3 are obviously satisfied.

Define

Bf = v · ∇xf ; Cf = Q(f, f).

Then Assumption 4(i) is obviously true, Assumption 4(ii) is satisfied
since B is linear continuous Xs+1 → Xs, and Assumption 4(iii) is a
consequence of [16, eq. (78)].

Assumption 5 holds true with f∞ = M ; notice that both the trans-
port and the collision part vanish on f∞.

Next, if f = f(x, v) is given, define

ρ =

∫
f dv; u =

1

ρ

∫
fv dv; T =

1

Nρ

∫
f |v − u|2 dv;

and

Mρ u T =
ρ(x) e−

|v−u(x)|2

2T (x)

[
2πT (x)

]N/2
.
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It is easy to derive uniform estimates of smoothness on ρ, u and T in
terms of the estimates on f ; and to derive similarly strict positivity
estimates on ρ, T : see [16, Proposition 7].

Now we can introduce the nonlinear projection operators:

Π1f = Mρ u T ; Π2f = Mρ 0 1; Π3f = M.

By adjusting the constants C ′
s, K ′

0, we can ensure that Πj(X) ⊂ Y .
Then the rest of Assumption 6 follows easily.

The natural Lyapunov functional in the present case is of course
Boltzmann’s H functional:

E(f) = H(f) =

∫

TN
x ×RN

v

f log f dv dx.

By standard computations, taking into account (18.2), we have

(18.4) E(f) − E(Π1f) =

∫
f log

f

MρuT
;

(18.5) E(Π1f) − E(f∞) =

∫
ρ log ρ +

∫
ρ
|u|2
2

+

∫
ρ(T − log T − 1).

To find a lower bound on (18.4), it suffices to use the Csiszár–Kullback–
Pinsker inequality and interpolation, as we did previously for the Vlasov–
Fokker–Planck equation (recall (17.3); or [16, eq. (47)1]). Upper and
lower bounds for (18.5) can be obtained as we did before for the com-
pressible Navier–Stokes equations. So Assumption 7 is satisfied.

Now the crucial step consists in checking Assumption 8. By a clas-
sical computation,

−H ′(f) · (Cf) =

∫
D
(
f(x, ·)

)
dx,

where D(f) is Boltzmann’s dissipation of information:

D(f) =
1

4

∫ (
f(v′)f(v′

∗)−f(v)f(v∗)
)(

log f(v′)f(v′
∗)−log f(v)f(v∗)

)

B(v − v∗, σ) dσ dv dv∗.

Known entropy production estimates from [58] make it possible to es-

timate D(f) from below by Kε

[
H(f)−H(Mρu T )

]1+ε
. (Such estimates

go back to [54]; see also [56] for a detailed account on this problem.)
Then Assumption 8(i) follows easily, as in [16, Corollary 5].

Assumption 8(ii) is an immediate consequence of Assumption 8(i),
since H ′(f) · (Bf) = 0.
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It remains to establish Assumption 8(iii). For this we use Re-

mark 49. According to [16, eq. (69)], if f = Mf
ρ u T at time t = 0

and f evolves according to ∂tf + v · ∇xf = 0, then

d2

dt2

∣∣∣∣
t=0

‖f − Mf
ρuT‖ ≥ K

(∫

TN

|∇T |2 +

∫

TN

|{∇u}|2
)

,

where, as in Section 16,

{∇u}ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
− 1

N
(∇ · u) δij,

and ∇ · u is the divergence of u. According to [16, Section IV.2], there
are constants K1, K2, K3 only depending on N , such that






∫

TN

|∇T |2 ≥ K1‖T − 1‖2 − C‖u‖2;

∫

TN

|{∇u}|2 ≥ K2‖∇u‖2 ≥ K3‖u‖2.

This implies
∥∥(Id − Π1)

′
Π1f · (BΠ1f)

∥∥2

L2 ≥ K(‖T − 1‖2 + ‖u‖2)

≥ K ′ ‖Π1f − Π2f‖2.

Next, according to [16, eq. (71)], if f = Mρ 0 1 at time t = 0 and f
evolves according to ∂tf + v · ∇xf = 0, then

d2

dt2

∣∣∣∣
t=0

‖f − Mf
ρ01‖ ≥ K

∫

TN

|∇ρ|2.

Combining this with a Poincaré inequality (see again [16, Section IV.2]),
we deduce that

∥∥(Id − Π2)
′
Π2f · (BΠ2f)

∥∥2

L2 ≥ K‖ρ − 1‖2 ≥ K ′‖Π2f − f∞‖2
L2.

(This is in fact as in Section 17, if we set W = 0.)
This concludes the verification of Assumption 8, and the result

follows by an application of Theorem 51. �

Remark 60. A comparison with the proof of the same result in [16]
shows that the crucial functional inequalities are all the same; but there
are essential simplifications in that (a) it suffices to do the computations
for Maxwellian states (“local equilibrium” in the language of [16]);
and especially (b) there is no longer need for the tricky analysis of the
system of differential inequalities. More explicitly, Sections III.3, V
and VI of [16] are shortcut by the use of Theorem 51.
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18.2. Bounce-back condition. Now let Ωx be a bounded smooth
open subset of RN ; up to rescaling units we may assume that |Ωx| = 1
(the Lebesgue measure of the domain is normalized). In this subsection
the boundary condition is of bounce-back type:

(18.6) x ∈ ∂Ωx =⇒ f(x, v) = f(x,−v).

A consequence of (18.6) is that u = 0 on ∂Ωx (the mean velocity
vanishes on the boundary).

Now there are only 2 conservation laws: mass and energy. So,
without loss of generality, I shall assume

(18.7)

∫
f dv dx = 1;

∫
f |v|2 dv dx = N.

The equilibrium is again the steady Maxwellian,

f∞(x, v) = M(v) =
e−

|v|2

2

(2π)N/2
.

Here is the analogue of Theorem 58:

Theorem 61 (Convergence to equilibrium for the Boltzmann equa-
tion with bounce-back boundary conditions). Let f be a solution of (18.1)
in a smooth bounded connected spatial domain Ωx, satisfying bounce-
back boundary conditions, the conservation laws (18.7), and the uni-
form regularity estimates (18.3). Then

∀s ≥ 0,
∥∥f(t, ·) − M

∥∥
Hs = O(t−∞).

Proof of Theorem 61. The proof is quite similar to the proof of
Theorem 58, however the sequence of projection operators is different:

Π1f = Mρ u T ; Π2f = Mρ u 〈T 〉; Π3f = Mρ 0 1; Π4f = M,

where 〈T 〉 =
∫

ρT is the average temperature. According to [16,
eq. (70)-(71)] and a reasoning similar to the one in the proof of Theo-
rem 58,

(18.8)





∥∥∥
(
Id − Π1

)′
Π1f

· (BΠ1f)
∥∥∥

2

≥ K‖∇T‖2;

∥∥∥
(
Id − Π2

)′
Π2f

· (BΠ2f)
∥∥∥

2

≥ K‖∇symu‖2;

∥∥∥
(
Id − Π3

)′
Π3f

· (BΠ3f)
∥∥∥

2

≥ K‖∇ρ‖2,
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where ∇symu is the symmetrized gradient of u, that is

(
∇symu

)
ij

=
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

By Poincaré inequalities,

‖∇T‖2 ≥ K‖T − 〈T 〉‖2; ‖∇ρ‖2 ≥ K‖ρ − 1‖2.

By the classical Korn inequality, and the Poincaré inequality again
(component-wise),

‖∇symu‖2 ≥ K‖∇u‖2 ≥ K ′‖u‖2.

These estimates imply ‖(Id − Πj)
′
Πjf · (BΠjf)‖2 ≥ K‖Πjf − Πj+1f‖2

for all j ∈ {1, 2, 3}, so Assumption 8(iii) is satisfied in the end. Then
Theorem 51 applies. �

18.3. Specular reflection in a nonaxisymmetric domain. In
this subsection the bounce-back boundary condition is replaced by the
specular reflection condition:

x ∈ ∂Ωx =⇒ f(x, v) = f(x, Rxv), Rxv = v − 2〈v, n〉n.

This condition is more degenerate and the shape of the domain will
influence the form of the equilibrium. For the moment I shall assume
that the domain is nonaxisymmetric in dimension N = 3. The notation
is the same as in Subsection 18.2.

Theorem 62 (Convergence to equilibrium for the Boltzmann equa-
tion with nonaxisymmetric specular conditions). Let f be a solution
of (18.1) in a smooth bounded connected nonaxisymmetric spatial do-
main Ωx ⊂ R3, satisfying specular boundary condition, the conservation
laws (18.7), and the uniform regularity estimates (18.3). Then

∀s ≥ 0,
∥∥f(t, ·) − M

∥∥
Hs = O(t−∞).

Proof of Theorem 62. The proof is entirely similar to the proof
of Theorem 61, except that the condition u = 0 on the boundary is
replaced by the weaker condition u · n = 0, where n is the inner unit
normal to Ωx. Then the classical Korn inequality should be replaced by
the Korn inequality established by Desvillettes and myself in [15]. �

18.4. Specular reflection in a spherically symmetric do-
main. In this subsection Ωx is a bounded smooth connected spher-
ically symmetric domain in R3; so, up to translation, Ωx is either a
ball (|x| < R) or a shell (0 < r < |x| < R). Again I shall assume
that |Ωx| = 1. I shall write N = 3 to keep track of the role of the
dimension in various formulas (certainly the analysis can be extended
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to more general domains, but one has to be careful about the meaning
of the conservation of angular momentum).

Now there are N + 2 conservation laws: mass, kinetic energy and
angular momentum (N scalar quantities). Without loss of generality,
I shall assume

(18.9)

∫
f dv dx = 1;

∫
f(x, v)|v|2 dv dx = N ;
∫

f(x, v)(v ∧ x) dv dx = M ∈ R
N .

The existence of an equilibrium is not trivial if M 6= 0, and the equilib-
rium does not seem to be explicit. It is a local Maxwellian with uniform
temperature θ, but nonzero velocity u∞ and nonhomogeneous density
ρ∞. The equations determining this equilibrium were studied, at the
beginning of the nineties, by Desvillettes [12]. Here I shall suggest a
variational approach to this problem, by means of the following lemma
from elementary calculus of variations (the proof of which will be only
sketched):

Lemma 63 (stationary solutions in a spherically symmetric do-
main). Let Ωx be a spherically symmetric domain in RN , N = 3,
|Ωx| = 1. Whenever ρ is a nonnegative integrable density on Ωx, and
m ∈ L1(Ωx; R

N), define

F (ρ, m) =

∫
ρ log ρ − N

2
log

(
1 − 1

N

∫ |m|2
ρ

)
.

Then there is a unique (ρ∞, m∞) ∈ C∞(Ωx; R+×RN) which minimizes
the functional F under the constraints

(18.10)

∫
ρ = 1;

∫
m(x) ∧ x dx = M.

Moreover, ρ is strictly positive; and there are an antisymmetric matrix
Σ∞ and positive constants θ∞ and Z such that for all x ∈ Ωx,

m(x)

ρ(x)
= Σ∞x; ρ∞(x) =

e
|Σ∞x|2

2θ∞

Z
.

Sketch of proof of Lemma 63. Write

θ = 1 − 1

N

∫ |m|2
ρ

,
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then

F (ρ, m) =

∫
ρ log ρ +

N

2
(1 − θ) +

N

2

(
θ − log θ − 1

)

=

∫
ρ log ρ +

∫ |m|2
2ρ

+ Ψ(θ),

where Ψ(θ) = (N/2)(θ − log θ − 1).
By a classical computation, (ρ, m) 7−→ |m|2/ρ is convex, so θ is a

concave function of (ρ, m). Moreover, θ remains in (0, 1), and on that
interval Ψ is a convex decreasing function of θ. It follows that Ψ(θ) is
a strictly convex function of (ρ, m). So

F : (ρ, m) 7−→
∫

ρ log ρ +

∫ |m|2
2ρ

+ Ψ(θ)

is a strictly convex function of (ρ, m). This conclusion does not change
if F is restricted on the domain defined by the linear constraints (18.10);
so F has at most one minimizer.

The Euler–Lagrange equations for the minimization of F read

(18.11)





log ρ − |m|2
2θρ2

= λ0;

N

θ

(
mi

ρ

)
= εijk λjxk,

where (λj)0≤j≤N are constants, (mi)1≤i≤N are the components of m, and
εijk is defined by the equations (a∧ b)i =

∑
εijkajbk. These equations

imply that m/ρ is an antisymmetric linear function of x. In particular,
the minimizer a priori lives in a finite-dimensional space. The rest of
the lemma follows by classical arguments. �

The goal of the present subsection is the following result:

Theorem 64 (Convergence to equilibrium for the Boltzmann equa-
tion with spherically symmetric specular conditions). Let f be a solu-
tion of (18.1) in a smooth bounded connected spherically symmetric
spatial domain Ωx ⊂ R3, satisfying specular boundary condition, the
conservation laws (18.9) and the uniform regularity estimates (18.3).
Then

∀s ≥ 0,
∥∥f(t, ·) − f∞

∥∥
Hs = O(t−∞),

where

f∞(x, v) =
e

|Σ∞x|2

2θ∞

Z

e−
|v−Σ∞x|2

2θ∞

(2πθ∞)3/2
,
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and the antisymmetric matrix Σ∞, the positive constants Z and θ∞ are
provided by Lemma 63.

Remark 65. The variable θ∞ is the (uniform) equilibrium temper-
ature; the velocity field in the stationary state is still rotating, and the
density is lower near the interior of the box.

Proof of Theorem 64. The only differences with the previously
treated cases lie in the definition of the projection operators, and the
verification of Assumptions 7(ii) and 8(iii).

In the present case, let

Σ := 〈∇au〉, θ := 〈T 〉ρ;
more explicitly, Σ is the average value of the antisymmetric part of
the matrix-valued field ∇u (the averaging measure is the normalized
Lebesgue measure), while θ is the average value of the temperature (but
now the averaging measure has density ρ). I shall identify the matrix
Σ with the velocity field x 7−→ Σx, and θ with the constant function
x → θ. Then the sequence of projection operators is as follows:

Π1f = Mρ u T ; Π2f = Mρ u θ; Π3f = Mρ Σ θ;

Π4f = f∞ = Mρ∞ Σ∞ θ∞.

Once again the Lyapunov functional is

H(f) =

∫
f log f.

After taking into account the conservation laws (18.9), one observes
that

(18.12)

H(Π1f)−H(f∞) =

(∫
ρ log ρ +

N

2

∫
ρ(T − log T − 1) +

∫
ρ
|u|2
2

)

−
(∫

ρ∞ log ρ∞ +
N

2

∫
ρ∞(θ − log θ − 1) +

∫
ρ∞

|u∞|2
2

)
.

Let again Φ(θ) = θ − log θ − 1: then by Jensen’s inequality (in quanti-
tative form),

∫
ρΦ(T ) ≥ Φ(〈T 〉ρ) + K‖T − 〈T 〉ρ‖2,

where K depends on the bounds on ρ and T . Plugging this in (18.12)
and using the same notation as in Lemma 63, one obtains the lower
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bound

H(Π1f) − H(f∞)

=
N

2

(∫
ρΦ(T ) − Φ(〈T 〉ρ)

)
+
[
F (ρ, m) − F (ρ∞, m∞)

]

≥ K‖T − 〈T 〉ρ‖2 +
[
F (ρ, m) − F (ρ∞, m∞)

]
.

The upper bound

H(Π1f) − H(f∞) ≤ C‖T − 〈T 〉ρ‖2 +
[
F (ρ, m) − F (ρ∞, m∞)

]

is obtained in a similar way.
So to prove Assumption 7(ii), it suffices to check that

K‖Π1f − f∞‖2 ≤ F (ρ, m) − F (ρ∞, m∞) ≤ C‖Π1f − f∞‖2;

or, which amounts to the same,

(18.13) K
∥∥∥(ρ, m) − (ρ∞, m∞)

∥∥∥
2

≤ F (ρ, m) − F (ρ∞, m∞)

≤ C
∥∥∥(ρ, m) − (ρ∞, m∞)

∥∥∥
2

.

The upper bound is obvious from the definition, the bounds on (ρ, m)
(which follow from the bounds on f) and the bounds on (ρ∞, m∞). To
prove the lower bound, it suffices to establish the uniform convexity of
F . Let

f(ρ, m) = ρ log ρ +
|m|2
2ρ

.

The Hessian of f has matrix



IN

ρ
−m

ρ2

−m

ρ2

|m|2
ρ3

+
1

ρ


 ,

where IN stands for the N ×N identity matrix; under our assumptions
on ρ, this Hessian matrix is uniformly positive, so f is uniformly convex,
and the same is true of the functional F : (ρ, m) 7−→

∫
f(ρ, m) dx +

Ψ(θ). This conclusion does not change when one imposes the linear
constraints (18.10), and the lower bound in (18.13) follows.

The last crucial step in the proof consists in the verification of
Assumption 8(iii). To start with, we have, as in the previous subsection,

∥∥∥(Id − Π1)
′
Π1f · (BΠ1f)

∥∥∥
2

≥ K

∫
|∇T |2 +

∫
|{∇u}|2(18.14)

≥ K ′‖T − 〈T 〉ρ‖2,
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which controls ‖Π1f − Π2f‖2.
Next,
∥∥∥(Id − Π2)

′
Π2f · (BΠ2f)

∥∥∥
2

≥ K

∫
|∇symu|2 ≥ K ′‖∇u − Σ‖2,

where the second inequality follows from a version of Korn’s inequal-
ity [15, eq. (1)]. Note that Σ = ∇(Σx) (to avoid confusions I shall
now write Σx for the map x → Σx), so one can apply again a Poincaré
inequality to obtain in the end

(18.15)
∥∥∥(Id − Π2)

′
Π2f · (BΠ2f)

∥∥∥
2

≥ K‖u − Σx‖2,

which controls ‖Π2f − Π3f‖2.
The gain from Π3 is the main novelty. As a consequence of [16,

eq. (65)],

1

Mρ Σ θ

(
∂tMρ Σ θ + v · ∇xMρ Σ θ

)
(18.16)

=

(
∂tρ + Σ · ∇ρ

ρ
− N

2

∂tθ

θ

)

+

(
v − u√

θ

)
·
(√

θ
∇ρ

ρ
+

∂tΣ + (Σ · ∇)Σ√
θ

)

+
∑

i

(
vi − ui√

θ

)2
∂tθ

θ
.

The first and third lines do not bring any new estimate, so we focus on
the second line. First note that

(
(Σ · ∇)Σ

)
i
(x) =

∑

jkℓ

(Σjkxk) ∂j(Σiℓ xℓ) = (Σ2x)i.

(Do not mistake the symbol of summation with the matrix Σ.) Next,
the equation for the mean velocity field u is ∂tu + u · ∇u + ∇T +
T∇(log ρ) + (∇ · D)/ρ, where D vanishes on the range of Π1. Taking
the antisymmetric part of this equation results in ∂t∇au = 0, hence
∂tΣ = 0. The conclusion is that ∂tΣ vanishes on the range of Π3. From
all this information, we deduce that the second line of (18.16) can be
simplified into

(v − u) ·
(∇ρ

ρ
+

Σ2x

θ

)
,

where again Σ2x is a shorthand for the map x → Σ2x. It follows that

(18.17)
∥∥∥(Id − Π3)

′
Π3f · (BΠ3f)

∥∥∥
2

≥ K
∥∥∥
∇ρ

ρ
+

Σ2x

θ

∥∥∥
2

.
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I shall now show that

(18.18)
∥∥∥u − Σx

∥∥∥
2

+
∥∥∥
∇ρ

ρ
+

Σ2x

θ

∥∥∥
2

≥ K
(
‖ρ − ρ∞‖2 + |θ − θ∞|2

+ ‖Σx − Σ∞x‖2
)
.

Since the right-hand side controls ‖Π3f − Π4f‖2+ε, in view of (18.17)
and (18.15) this will imply
(18.19)∥∥∥(Id −Π2)

′
Π2f ·(BΠ2f)

∥∥∥
2

+
∥∥∥(Id −Π3)

′
Π3f ·(BΠ3f)

∥∥∥
2

≥ K‖Π3f−Π4f‖2,

completing the verification of Assumption 8(iii).
Since |θ − θ∞| ≤ C(‖ρ − ρ∞‖ + ‖u − u∞‖) and ‖Σx − Σ∞x‖ ≤

C‖Σ−Σ∞‖ ≤ C ′‖u− u∞‖, to establish (18.18) it is sufficient to prove

(18.20)
∥∥∥u − Σx

∥∥∥
2

+
∥∥∥
∇ρ

ρ
+

Σ2x

θ

∥∥∥
2

≥ K
(
‖ρ − ρ∞‖2 + ‖u − u∞‖2

)
.

In view of the bounds on ρ and u, and the uniform convexity of F
(used above to check Assumption 7(ii)), inequality (18.20) will be a
consequence of

(18.21)
∥∥∥∇u − Σ

∥∥∥
2

+
∥∥∥
∇ρ

ρ
+

Σ2x

θ

∥∥∥
2

≥ K
[
F (ρ, m) − F (ρ∞, m∞)

]
,

which we shall now check.
The following lemma will be useful:

Lemma 66. Let Φ be a K-uniformly convex function, defined and
differentiable on a convex open subset of a Hilbert space H, and let
Λ : H → Rd be a linear map. If X∞ minimizes Φ under the constraints
Λ(X) = c, then

Φ(X) − Φ(X∞) ≤ (2K)−1 inf
λ∈(Ker Λ)⊥

∥∥∥grad Φ(X) + λ
∥∥∥

2

.

Postponing the proof of Lemma 66 for the moment, let us apply it
to the uniformly convex functional

Φ(ρ, m) =

∫
ρ log ρ − N

2
log

(
1 − 1

N

∫ |m|2
ρ

)

and the linear map

Λ(ρ, m) =
(∫

ρ,

∫
m ∧ x

)
∈ R × R

N .

Then

gradΦ =
(
log ρ − |m|2

2θρ2
,

m

θρ

)
,
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and (KerΛ)⊥ is made of vectors λ = (λ0, A), where λ0 ∈ R and A is a
(constant!) antisymmetric matrix. So Lemma 66 implies
(18.22)

F (ρ, m)−F (ρ∞, m∞) ≤ C inf
λ0∈R; A∗=−A

(∥∥∥log ρ− |m|2
2θρ2

∥∥∥
2

+
∥∥∥

m

θρ
−Ax

∥∥∥
2)

,

By Poincaré inequality, the bounds on θ, and Korn inequality,
(18.23)

inf
A∗=−A

∥∥∥
m

θρ
− Ax

∥∥∥
2

≤ C inf
A∗=−A

∥∥∥∇(u − Ax)
∥∥∥

2

= C
∥∥∥∇u − 〈∇au〉

∥∥∥
2

.

On the other hand,

inf
λ0∈R

∥∥∥log ρ − |m|2
2θρ2

∥∥∥
2

≤ 2 inf
λ0

∥∥∥log ρ − |Σx|2
2θ

− λ0

∥∥∥
2

+ 2
∥∥∥
|Σx|2
2θ

− |m|2
2θρ2

∥∥∥
2

≤ 2 inf
λ0

∥∥∥log ρ − |Σx|2
2θ

− λ0

∥∥∥
2

+ C
∥∥∥u − Σx‖2.(18.24)

By Poincaré inequality, the second term in the right-hand side of (18.24)
can be bounded by a constant multiple of ‖∇u − Σ‖2. As for the first
term, it can also be bounded by means of a Poincaré inequality:

inf
λ0

∥∥∥log ρ − |Σx|2
2θ

− λ0

∥∥∥
2

=
∥∥∥log ρ − |Σx|2

2θ
−
〈

log ρ − |Σx|2
2θ

〉∥∥∥
2

≤ C
∥∥∥∇
(

log ρ − |Σx|2
2θ

)∥∥∥
2

= C
∥∥∥
∇ρ

ρ
+

Σ2x

θ

∥∥∥
2

.

All in all,

inf
λ0∈R

∥∥∥log ρ − |m|2
2θρ2

∥∥∥
2

≤ C
∥∥∥u − Σx

∥∥∥
2

+
∥∥∥
∇ρ

ρ
+

Σ2x

θ

∥∥∥
2

.

This combined with (18.22) and (18.23) concludes the proof of (18.21).
Then we can apply Theorem 51 and get the conclusion of Theorem 64.

�

Proof of Lemma 66. Let Φ̃ : X → Φ(X∞+X). By assumption,

0 is a minimizer of Φ̃ on Ker Λ. Since Φ is K-convex and differentiable,
the same is true of Φ̃, so that

Φ̃(0) ≥ Φ̃(X) −
〈
grad′Φ̃(X), X

〉
+

K

2
‖X‖2,
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where grad′ stands for the gradient in the space Ker Λ. It follows by
Young’s inequality that

Φ̃(X) − Φ̃(0) ≤

∥∥∥grad′Φ̃(X)
∥∥∥

2

2K
.

But grad′ Φ̃ is nothing but the orthogonal projection of gradΦ(X)
(in H) onto Ker Λ; so

∥∥∥grad′Φ̃(X)
∥∥∥ = inf

λ∈(Ker Λ)⊥

∥∥∥grad Φ̃(X) + λ
∥∥∥.

The conclusion of Lemma 66 follows easily. �

Remark 67. I don’t know if the term in Π2 can be dispended with
in (18.19); in any case this is an example where it is convenient to have
the general formulation of Assumption 8(iii), rather than the simplified
inequality (14.9). In the next subsection, another example will be
presented where this possibility is crucially used (see Remark 69).

18.5. Maxwellian accommodation. In this subsection Ωx will
again be a bounded smooth connected open subset of RN with unit
Lebesgue measure, but now the boundary condition will be the Max-
wellian accommodation with a fixed temperature Tw. Explicitly,
(18.25)

x ∈ ∂Ωx =⇒ f+(x, v) =

(∫
f−(x, v′) |v′ · n| dv′

)
Mw(v),

where f+ (resp. f−) stands for the restriction of f to {v ·n > 0} (resp.
{v ·n < 0}), n is the inner unit normal vector, and Mw is a fixed “wall”
Maxwellian:

Mw(v) =
e−

|v|2

2Tw

(2π)
N−1

2 T
N+1

2
w

.

(The analysis would go through if one would impose a more general
condition involving a reflection kernel C(v′ → v), as in [11, Chapter 1].)
An important identity which follows from (18.25) is

(18.26) ∀x ∈ ∂Ωx,

∫

RN

f(x, v) (v · n) = 0;

equivalently, the mean velocity satisfies

(18.27) ∀x ∈ ∂Ωx, u · n = 0.



18. BOLTZMANN EQUATION 125

In this case there is only one conservation, namely the total mass.
Without loss of of generality, I shall assume that the solution is nor-
malized so that

(18.28)

∫
f dv dx = 1.

Then the unique equilibrium is the Maxwellian distribution with
constant temperature equal to the wall temperature:

(18.29) f∞(x, v) =
e−

|v|2

2Tw

(2π)N/2
.

Theorem 68 (Convergence to equilibrium for the Boltzmann equa-
tion with Maxwellian accommodation). Let f be a solution of (18.1)
in a smooth bounded connected spatial domain Ωx ⊂ RN with |Ωx| = 1.
Assume that f satisfies the boundary condition (18.25), the conserva-
tion laws (18.28) and the uniform regularity estimates (18.3). Then

∀s ≥ 0,
∥∥f(t, ·) − f∞

∥∥
Hs = O(t−∞),

where f∞ is defined by (18.29).

Proof of Theorem 68. The proof follows again the same pat-
tern as in all the previous theorems in this section. However, the Lya-
punov functional is not Boltzmann’s H functional, but a modified ver-
sion of it:

E(f) =

∫
f log f +

1

2Tw

∫
f |v|2 dv dx.

Moreover, the sequence of nonlinear projection operators will be

Π1f = Mρ u T ; Π2f = Mρ u Tw ; Π3f = Mρ 0 Tw ; Π4f = M1 0 Tw .

In particular,

E(Π1f) − E(f∞)

=

∫
ρ log ρ − N

2

∫
ρ log T +

1

Tw

(∫
ρ
|u|2
2

+
N

2

∫
ρT

)

− N

2
log Tw +

N

2

=

∫
ρ log ρ +

1

Tw

∫
ρ
|u|2
2

+
N

2

∫
ρ

(
T

Tw

− log
T

Tw

− 1

)
.

From this it is easy to check Assumption 7(ii).
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The interesting features of this case reveal themselves when we try
to check Assumption 8. First, by a classical computation,

D(f) = −E ′(f) · (Bf) =

∫

Ωx

D(f(x, ·)) dx +

∫

Ωx×RN

(log f + 1)(−v · ∇xf)

+
1

2Tw

∫

Ωx×RN

(v · ∇xf)|v|2 dv dx

=

∫

Ωx

D(f(x, ·)) dx−
∫

∂Ωx×RN

(
f log f(x, v) + f(x, v)

|v|2
2Tw

)
|v · n| dv dx

=

∫

Ωx

D(f(x, ·)) dx +

∫

∂Ωx×RN

f log
f

e−
|v|2

2Tw

(v · n) dv dx.

As before, he first term in the right-hand side is controlled below by
K[E(f)− E(Π1f)]1+ε. The second term needs some rewriting. In view
of (18.26) and (18.25), we have, writing ρ−(x) =

∫
f−(x, v)|v · n| dv,

∫

∂Ωx×RN

−f log
f

e−
|v|2

2Tw

(v · n) dv dx = −
∫

f log

(
f

ρ− Mw

)
(v · n) dv dx

=

∫

v·n<0

f log

(
f

ρ− Mw

)
|v · n| dv dx

=

∫

v·n<0

f |v · n| log

(
f |v · n|

ρ−Mw |v · n|

)
dv dx.

This quantity takes the form of a nonnegative information functional,
as a particular case of the Darrozès–Guiraud–Cercignani inequality [11,
Chapter 1]. The Csiszár–Kullback–Pinsker inequality will give an ex-
plicit lower bound: For each x ∈ ∂Ωx,
∫

v·n<0

f |v · n| log

(
f |v · n|

ρ−Mw |v · n|

)
dv

≥ 1

2ρ−(x)

∥∥∥f |v · n| − ρ−Mw|v · n|
∥∥∥

2

L1({v·n<0};|v·n| dv)

=
1

2ρ−(x)

∥∥∥f |v · n| − ρ−Mw|v · n|
∥∥∥

2

L1(|v·n| dv)
.

After interpolation and use of smoothness bounds, we conclude that
(18.30)

D(f) ≥ K
[
E(f)−E(Π1f)

]1+ε
+K

∥∥f−ρ−Mw

∥∥2+ε

Lq(∂Ωx×RN ; |v·n| (1+|v|2)q/2 dx dv)
,

where q is arbitrarily large and ε is arbitrarily small. A useful conse-
quence of (18.30) is

(18.31) D(f) ≥ K‖T − Tw‖2+ε
Lq(∂Ωx) + K‖u‖2+ε

Lq(∂Ωx),
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where again q is arbitrarily large.
The other estimates are similar to the ones in the previous subsec-

tions:

(18.32)






∥∥∥(Id − Π′
1)Π1f · (BΠ1f)

∥∥∥
2

≥ K
(
‖∇T‖2 + ‖{∇u}‖2

)
;

∥∥∥(Id − Π′
2)Π2f · (BΠ2f)

∥∥∥
2

≥ K‖∇symu‖2;

∥∥∥(Id − Π′
3)Π3f · (BΠ3f)

∥∥∥
2

≥ K‖∇ρ‖2.

Thanks to (18.31) and (18.32)1,

D(f) +
∥∥∥(Id − Π′

1)Π1f · (BΠ1f)
∥∥∥

2

≥ K
(
‖∇T‖2

L2(Ωx) + ‖T − Tw‖2+ε
Lq(∂Ωx)

)

≥ K ′‖T − Tw‖2+ε
Lp(Ωx),

where the latter inequality comes from, say, the trace Sobolev inequal-
ity if, say, p = (2N)/(N − 2) and q = 2(N − 1)/(N − 2). (If N = 2 a
slightly different argument based on a variant of the Moser–Trudinger
inequality can be used to give the same result.) After interpolation one
concludes that
(18.33)

D(f)+
∥∥∥(Id −Π′

1)Π1f ·(BΠ1f)
∥∥∥

2

≥ K‖T−Tw‖2+ε ≥ K ′‖Π1f−Π2f‖2+ε′.

Next, if Ωx is not axisymmetric, then the boundary condition (18.27),
the Korn inequality from [15] and the Poincaré inequality imply

∥∥∥(Id − Π′
2)Π2f · (BΠ2f)

∥∥∥
2

≥ K‖∇symu‖2(18.34)

≥ K ′‖u‖2 ≥ K ′′‖Π2f − Π3f‖2+ε.

If Ωx is axisymmetric, the previous argument breaks down, but we
can use (18.31) and replace (18.34) by

D(f) +
∥∥∥(Id − Π′

2)Π2f · (BΠ2f)
∥∥∥

2

≥ K‖∇symu‖2 + ‖u‖2+ε
L2(∂Ω)

(18.35)

≥ K ′‖u‖2+ε
L2(∂Ω) ≥ K ′′‖Π2f − Π3f‖2+ε′,

where the but-to-last inequality follows from a trace Korn inequality
(Proposition A.27 in Appendix A.23).
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Finally,
∥∥∥(Id − Π′

3)Π3f · (BΠ3f)
∥∥∥

2

≥ K‖∇ρ‖2

≥ K‖ρ − 1‖2 ≥ K ′‖Π3f − Π4f‖2+ε′.

Then Assumption 8(iii) is satisfied, and one can use Theorem 51 to
prove Theorem 68. �

Remark 69. This is an example where the range of Π1 is much
larger than the set where the dissipation D vanishes. Trying to devise
a projection operator onto the space where D vanishes gives rise to a
horrendous nonlocal variational problem whose solution is totally un-
clear. On the other hand, inequalities (18.33) and (18.35) would be
false without the contribution of D(f). In this example we see that
the possibility to use the generalized condition appearing in Assump-
tion 8(iii), rather than the simplified condition (14.9), leads to a great
flexibility.

18.6. Further comments. In many important situations (vari-
able wall temperature, evaporation problems, etc.), one is led to study
non-Maxwellian stationary solutions of the Boltzmann equation; then
there is usually no variational principle for these solutions, and the
mere existence of stationary solutions is a highly nontrivial problem,
see e.g. [1, 2, 3].

From the technical point of view, the non-Maxwellian nature of
the stationary state means that if one defines B = v · ∇x (transport
operator) and C = Q (collision operator), then the equations Bf∞ = 0
and Cf∞ = 0 cease to hold. No need to say, Theorem 51 collapses, and
it is quite hard to figure out how to save it.

There is a thin analogy with the (linear) problem of the oscillator
chain considered in Subsection 9.2 in the case when the two tempera-
tures are not equal; in that case a change of reference measure, based
on Proposition 5(ii), was at least able to reduce the problem to one
of the type A∗A + B, B∗ = −B. By analogy, one could imagine that
a first step to come to grips with the quantitative analysis of stabil-
ity for non-Maxwellian stationary solutions consists in re-defining the
“antisymmetric” and the “diffusive” parts of the Boltzmann equation
by performing some change of reference measure. Even this first step
is nontrivial.
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This last part is devoted to some technical appendices used through-
out the memoir, some of them with their own interest.

In Appendix A.19 I have gathered some sufficient conditions for
a probability measure to admit a Poincaré inequality. After recalling
some well-known criteria for Poincaré inequality in Rn, I shall prove
some useful results about tensor products; they might belong to folklore
in certain mathematical circles, but I am not aware of any precise
reference.

Appendices A.20, A.21 and A.22 are devoted to some properties of
the linear (kinetic) Fokker–Planck equation. First in Appendix A.20
I shall prove a uniqueness theorem; the method is quite standard, al-
though computations are a bit tricky.

Then in Appendix A.21 I shall present a new strategy to get hypoel-
liptic regularization estimates for the kinetic Fokker–Planck equation.
This contribution is much more original and could be considered as a
research paper on its own right. The method has the advantage to be
very elementary, to avoid fractional derivatives as well as localization,
and to yield optimal exponents of decay in short time. As Nash’s the-
ory of elliptic regularity, it is based on differential equations satisfied
by certain functionals of the solutions. The results are nonstandard in
several respects: they are global, directly yield pointwise in time esti-
mates, and apply for initial data that do not lie in an L2-type space.

A closely related, but somewhat simpler strategy was found inde-
pendently and almost simultaneously by Frédéric Hérau. I shall explain
his method in Subsection A.21.2, and develop it into an abstract theo-
rem of global regularization applying to the same kind of operators that
have been considered in Part I of this memoir. In Subsection A.21.4
I discuss further “entropic” estimates of hypoelliptic regularization,
where regularity is quantified by the Fisher information.

In Appendix A.22 I shall present some nonoptimal, but elementary
methods to establish Gaussian lower bounds for Fokker–Planck-type
equations.

Finally, in Appendix A.23 I have gathered various technical lem-
mas and functional inequalities which are used throughout the memoir.
I draw the attention of the reader to the “distorted Nash inequality”
appearing in Lemma A.25, which might have an interesting role to play
in the future for “global” hypoelliptic regularization estimates.

I warmly thank François Bouchut and Frédéric Hérau for many
discussions about kinetic hypoellipticity. I developed the core of the
method of Appendix A.21 during a stay in Reading University, from
January to March 2003; thanks are due to Mike Cullen for his hospital-
ity. The abstract regularization theorem from Subsection A.21.2 grew
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out from discussions with Denis Serre. I also acknowledge useful con-
versations with Michael Christ in Berkeley. Remarks A.16 and A.17
about pointwise estimates on the fundamental solution, and Appen-
dix A.22 as well, were written during a stay in Kyoto University, in
July and August 2008, long after the completion of the rest of these
notes; it is a pleasure to thank Kazuo Aoki and the Department of
Mechanical Engineering and Science in Kyoto for their hospitality, and
the Japan Society for Promotion of Science for its support.



132

A.19. Some criteria for Poincaré inequalities

To begin with, I shall recall a popular and rather general criterion
for Poincaré inequalities in Rn.

Theorem A.1. Let V ∈ C2(Rn), such that e−V is a probability
density on Rn. If

(A.19.1)
|∇V (x)|2

2
− ∆V (x) −−−−→

|x|→∞
+∞,

then µ satisfies a Poincaré inequality.

Proof. The starting point is a well-known estimate, see e.g. [17,
Proof of Theorem 6.2.21]. Let h ∈ C1

c (Rn), define g = h e−aV , a > 0;
then after expanding the square norm of the gradient and integrating
by parts, one finds∫

|∇h|2 e−V =

∫
|∇g|2 e(2a−1)V +

∫
h2
[
(a − a2)|∇V |2 − a∆V

]
e−V .

The choice a = 1/2 gives

(A.19.2)

∫
wh2 dµ ≤ 2

∫
|∇h|2 dµ, w =

|∇V |2
2

− ∆V.

Let R0 > 0 be large enough that w(|x|) > 0 for |x| ≥ R0. For
R > R0, define ε(R) := [inf{w(|x|); |x| ≥ R}]−1; then ε(R) → 0 as
R → ∞. So it follows from (A.19.2) that

(A.19.3)

∫

|x|≥R

h2 dµ ≤ ε(R)

[
2

∫
|∇h|2 dµ − (inf w)

∫
h2 dµ

]
.

Now let h ∈ C1(Rn, R) with
∫

h dµ = 0. For any R > 0, let BR

be the ball of radius R in Rn, and let µR be the restriction of µ to BR

(normalized to be a probability measure). Since BR is bounded, µR

satisfies a Poincaré inequality with a constant P (R) depending on R,
so ∫

h2 dµR ≤ P (R)

∫
|∇h|2 dµR +

(∫
h dµR

)2

.

Of course µR has density (µ[BR])−1e−V (x)1|x|≤R. If R is large enough,
then µ[BR] ≥ 1/2, so

(A.19.4)

∫

|x|≤R

h2 e−V ≤ P (R)

∫

|x|≤R

|∇h|2 e−V + 2

(∫

|x|≤R

h e−V

)2

.

Since
∫

he−V = 0 and e−V is a probability density,

(A.19.5)

(∫

|x|≤R

h e−V

)2

=

(∫

|x|>R

h e−V

)2

≤
∫

|x|>R

h2e−V .
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Plugging this into (A.19.4), one deduces that

(A.19.6)

∫
h2 e−V ≤ P (R)

∫
|∇h|2 e−V + 3

∫

|x|>R

h2 e−V .

Combining this with (A.19.3), we recover
∫

h2 e−V ≤ [P (R) + 6ε(R)]

∫
|∇h|2 e−V − 3(inf w)ε(R)

∫
h2 e−V .

So, if R is large enough that 3(inf w)ε(R) > −1, one has
∫

h2 e−V ≤
(

P (R) + 6ε(R)

1 + 3(inf w)ε(R)

)∫
|∇h|2 e−V .

This concludes the proof of Theorem A.1. �

The sequel of this Appendix is devoted to Poincaré inequalities
in product spaces. It is well-known that “spectral gap inequalities
tensorize”, in the following sense: If each Lℓ (ℓ = 1, 2) is a nonnegative
operator on a Hilbert space Hℓ, admitting a spectral gap κℓ, then
L1 ⊗ I + I ⊗ L2 admits a spectral gap κ = min(κ1, κ2). Now the goal
is to extend this result in a form which allows multipliers. I shall start
with an abstract theorem and then particularize it.

Theorem A.2. For ℓ = 1, 2, let Lℓ be a nonnegative unbounded
operator on a Hilbert space Hℓ, admitting a finite-dimensional kernel,
and a spectral gap κℓ > 0. Let M be a nonnegative unbounded operator
acting on H2, whose restriction to the kernel K2 of L2 is bounded and
coercive. Then the unbounded operator

L = L1 ⊗ M + I ⊗ L2

admits a spectral gap κ > 0. More precisely, for any nonnegative op-
erator M ≤ M , such that the restriction M |K2 of M to K2 satisfies
λI ≤ M ≤ ΛI, one has

κ ≥ min

(
κ2

2
,

κ2

16

λ

Λ2
,

κ1

2
λ

)
.

Theorem A.3. (i) For ℓ = 1, 2, let (Xℓ, µℓ) be a probability space,
and let Lℓ be a nonnegative operator on Hℓ = L2(µℓ), whose kernel is
made of constant functions, admitting a spectral gap κℓ > 0. Let m be
a nonnegative measurable function on X2, which does not vanish µ2-
almost everywhere, and M be the multiplication operator by m. Then
the unbounded operator

L = L1 ⊗ M + I ⊗ L2
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admits a spectral gap κ > 0. More precisely, for any nonnegative func-
tion m ≤ m, lying in L2(µ2),

κ ≥ min

(
κ2

2
,

κ2

16

‖m‖2
L1

‖m‖2
L2

,
κ1

2
‖m‖L1

)
.

(ii) More generally, for each ℓ ∈ {1, . . . , N}, let (Xℓ, µℓ) be a prob-
ability space, and let Lℓ (1 ≤ ℓ ≤ N) be a nonnegative symmetric
operator on Hℓ = L2(µℓ), whose kernel is made of constant functions,
admitting a spectral gap κℓ; let mℓ be a nonnegative measurable func-
tion on Xℓ+1 × . . .×XN , which does not vanish µℓ+1 ⊗ . . .⊗µN -almost
everywhere, and let M ℓ be the associated multiplication operator. Then
the linear operator

L =

N∑

ℓ=1

I⊗ℓ−1 ⊗ Lℓ ⊗ M ℓ

admits a spectral gap.

Example A.4. Let µ and ν be two probability measures on R, each
satisfying a Poincaré inequality. Equip R2 with the tensor measure
µ ⊗ ν(dx dy) = µ(dx) ν(dy). Then

L = −(∂∗
x∂x + x2∂∗

y∂y)

is coercive on L2(µ ⊗ ν)/R.

Proof of Theorem A.2. Let Pℓ be the orthogonal projection on
(KerLℓ)

⊥ in Hℓ. The spectral gap assumption means Lℓ ≥ κℓ Pℓ. Let
M be the multiplication operator by m, then M ≥ M .

When applied to nonnegative operators, tensorization preserves the
order: when A ≥ A′ ≥ 0 and B ≥ B′ ≥ 0, one has A ⊗ B ≥ A ⊗ B′ ≥
A′ ⊗ B′. Thus,

L1 ⊗ M + I ⊗ L2 ≥ κ1P1 ⊗ M + κ2I ⊗ P2.

So it is sufficient to prove the theorem when Lℓ = Pℓ and m = m ∈
L2(µ2).

Let (e1
i )i≥0 be an orthonormal basis for H1, such that (e1

i )i≤k1

is an orthonormal basis of K1 := Ker L1; and let (e2
j)j≥0 be an or-

thonormal basis for H2, such that (e2
j )j≤k2 is an orthonormal basis of

K2 := Ker L2. Then (e1
i ⊗e2

j )i,j≥0 is an orthonormal basis for H. More-

over, the kernel of L is the vector space generated by (e1
i ⊗ e2

j )i,j∈K,
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where K := {(i, j); i ≤ k1, j ≤ k2}. So the goal is to prove

f =
∑

(i,j)

cije
1
i ⊗ e2

j =⇒

κ1〈(P1 ⊗ M)f, f〉 + κ2〈(I ⊗ P2)f, f〉 ≥ κ
∑

(i,j)/∈K

c2
ij.

First of all,

(I ⊗ P2)f =
∑

(i,j)

cij e1
i ⊗ P2e

2
j =

∑

i≥0, j≥k2+1

cij e1
i ⊗ P2e

2
j ;

so

(A.19.7) 〈(I ⊗ P2)f, f〉 =
∑

i≥0; j≥k2+1

c2
ij .

Next,

〈(P1 ⊗ M)f, f〉 =
∑

(i,i′,j,j′)

cijci′j′
〈
P1e

1
i , e

1
i′

〉〈
Me2

j , e
2
j′

〉

=
∑

i≥k1+1; j,j′≥0

cijcij′
〈
Me2

j , e
2
j′

〉

=
∑

i≥k1+1; j,j′≥k2+1

cijcij′
〈
Me2

j , e
2
j′

〉

+ 2
∑

i≥k1+1; j≥k2+1; j′≤k2

cijcij′
〈
Me2

j , e
2
j′

〉

+
∑

i≥k1+1; j,j′≤k2

cijcij′
〈
Me2

j , e
2
j′

〉
.

We shall estimate these three sums one after the other:
- The first sum might be rewritten as

∑

i≥k1+1

〈
M
( ∑

j≥k2+1

cije
2
j

)
,
( ∑

j≥k2+1

cije
2
j

)〉
,

and is therefore nonnegative.
- Similarly, the third sum might be rewritten as

∑

i≥k1+1

〈
M
(∑

j≤k2

cije
2
j

)
,
(∑

j≤k2

cije
2
j

)〉
,

which can be bounded below by

λ
∑

i≥k1+1; j≤k2

c2
ij .
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- Finally, by applying the inequality ‖Mej‖ ≤ Λ (j ≤ k2) and the
Cauchy–Schwarz inequality twice, one can bound the second sum from
below by

−2
∑

j≤k2

∑

i≥k1+1

cij‖Me2
j‖
∥∥∥∥∥
∑

j′≥k2+1

cij′e
2
j′

∥∥∥∥∥

≥ −2Λ
∑

j≤k2

√ ∑

i≥k1+1

c2
ij

√ ∑

i≥k1+1

∥∥∥
∑

j′≥k2+1

cij′e2
j′

∥∥∥
2

≥ −2Λ

√ ∑

i≥k1+1; j≤k2

c2
ij

√ ∑

i≥k1+1; j≥k2+1

c2
ij.

All in all,

〈(P1 ⊗ M)f, f〉

≥ λ
∑

i≥k1+1; j≤k2

c2
ij − 2Λ

√ ∑

i≥k1+1; j≤k2

c2
ij

√ ∑

i≥k1+1; j≥k2+1

c2
ij

≥ λ

2

∑

i≥k1+1; j≤k2

c2
ij −

4Λ2

λ

∑

i≥k1+1; j≥k2+1

c2
ij .

Combining this with (A.19.7), we see that for all θ ∈ [0, 1],

〈Lf, f〉 ≥ κ2〈(I ⊗ P2)f, f〉 + κ1θ〈(P1 ⊗ M)f, f〉

≥ κ2

∑

i≥0; j≥k2+1

c2
ij +

κ1θλ

2

∑

i≥k1+1; j≤k2

c2
ij −

4κ1θΛ
2

λ

∑

i≥k1+1; j≥k2+1

c2
ij

≥ κ

(
∑

i≥0; j≥k2+1

c2
ij +

∑

i≥k1+1; j≤k2

c2
ij

)
,

with

κ := min

(
κ2 −

4κ1θΛ
2

λ
,

κ1θλ

2

)
.

To conclude the proof of Theorem A.2, it suffices to choose

θ := min

(
1,

κ2λ

8κ1Λ2

)
.

�

Proof of Theorem A.3. Let M be the multiplication operator
by m. The restriction of M to constant functions is obviously coercive
with constant λ :=

∫
m dµ2, and M is bounded by ‖m‖L1I. Then (i)

follows by a direct application of Theorem A.2. After that, statement
(ii) follows from (i) by a simple induction on N . �
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A.20. Well-posedness for the Fokker–Planck equation

The goal of this Appendix is the following uniqueness theorem:

Theorem A.5. With the notation of Theorem 6, for any f0 ∈
L2((1 + E) dv dx), the Fokker–Planck equation (2.7) admits at most
one distributional solution f = f(t, x, v) ∈ C(R+;D′(Rn

x × Rn
v )) ∩

L∞
loc(R+; L2((1+E) dv dx))∩L2

loc(R+; H1
v (Rn

x×Rn
v )), such that f(0, ·) =

f0.

Remark A.6. The a priori estimates

d

dt

∫
f 2 dv dx = −2

∫
|∇vf |2 dv dx + n

∫
f 2 dv dx

d

dt

∫
f 2E dv dx = −2

∫
|∇vf |2 dv dx + n

∫
f 2(1 + E) dv dx

allow to prove existence of a solution, too, for an initial datum f0 ∈
L2((1 + E) dv dx); but this is not what we are after here. (Actually,
an existence theorem can be established under much more general as-
sumptions.)

Before going on with the argument, I should explain why the unique-
ness statement in Theorem 7 implies the one in Theorem 6. In that
case, Proposition 5(iii) can be applied even if ∇V is only continuous:
indeed, the differential operator ∇V (x)·∇v always makes distributional
sense. So, if h is any solution of (2.6), satisfying the assumptions of
Theorem 6, then f := hρ∞ defines a solution of (2.7), and it also
satisfies the assumptions in Theorem 7, in view of the inequalities

∫
f 2(1 + E) dv dx ≤

∫
f 2eE dv dx =

∫
h2e−E dv dx,

∫
|∇vf |2 dv dx =

∫
|∇v(ρ∞h)|2 dv dx

≤ 2

∫
|∇vh|2 ρ2

∞ dv dx + 2

∫
h2|∇vρ∞|2 dv dx

≤ C sup
x,v

[
(1 + |v|2)e−V (x)e−

|v|2

2

](∫
|∇vh|2 dµ +

∫
h2 dµ

)
.

Proof of Theorem A.5. By linearity, it is enough to prove

‖f(T, ·)‖L2 ≤ eCT‖f(0, ·)‖L2,

which will also yield short-time stability. So let f solve the Fokker–
Planck equation in distribution sense, and let T > 0 be an arbitrary
time.
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For any ϕ ∈ C∞(t, x, v), compactly supported in (0, T )× Rn
x × Rn

v ,
one has∫ ∫

f
(
∂tϕ + v · ∇xϕ −∇V (x) · ∇vϕ + ∆vϕ − v · ∇vϕ

)
dt dv dx = 0.

Since f ∈ L∞([0, T ]; L2(Rn
x×Rn

v )), a standard approximation procedure
shows that

(A.20.1)

∫
f(T, ·)ϕ(T, ·) dv dx −

∫
f(0, ·)ϕ(0, ·) dv dx =

∫ ∫
f
(
∂tϕ + v · ∇xϕ −∇V (x) · ∇vϕ + ∆vϕ − v · ∇vϕ

)
dt dv dx

for all ϕ ∈ C1((0, T ); C2
c (R

n
x ×Rn

v ))∩C([0, T ]; C2
c (R

n
x ×Rn

v )), where
∫ ∫

stands for the integral over [0, T ] × Rn
x × Rn

v .
Let χ, η be C∞ functions on Rn with 0 ≤ χ ≤ 1, χ(x) ≡ 1 for

|x| ≤ 1, χ(x) ≡ 0 for |x| ≥ 2, η ≥ 0,
∫

η = 1, η radially symmetric,
η(x) ≡ 0 for |x| ≥ 1. With the notation ε = (ε1, ε2), δ = (δ1, δ2).
Define

χε(x, v) = χ(ε1x) χ(ε2v), ηδ(x, v) = η(δ1x) η(δ2v).

In words: χε is a family of smooth cut-off functions, and ηδ is a family
of mollifiers. (The introduction of ηδ is the main modification with
respect to the argument in [32, Proposition 5.5].)

Define now

fε,δ := (fχε) ∗ ηδ, ϕε,δ := χε((fχε) ∗ ηδ ∗ ηδ).

The goal is of course to let δ → 0, ε → 0 in a suitable way.
Since η is radially symmetric, the identity

∫
g(f ∗ η) =

∫
(g ∗ η)f

holds true. So, for any t ∈ [0, T ],

(A.20.2)

∫
f(t, ·)ϕε,δ(t, ·) dv dx =

∫
fε,δ(t, ·)2 dv dx.

Similarly,

(A.20.3)

∫
f∂tϕε,δ dv dx =

∫
fε,δ ∂tfε,δ dv dx =

1

2

d

dt

∫
f 2

ε,δ dv dx.

By combining (A.20.2) and (A.20.3), we get

∫ ∫
f∂tϕε,δ dv dx dt =

1

2

(∫
f(T, ·)ϕε,δ(T, ·) dv dx

−
∫

f(0, ·)ϕε,δ(0, ·) dv dx

)
.
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So, by plugging ϕ = ϕε,δ into (A.20.1), one obtains

(A.20.4)
1

2

(∫
f(T, ·)ϕ(T, ·) dv dx −

∫
f(0, ·)ϕ(0, ·) dv dx

)

(A.20.5) =

∫ ∫
fχε

(
v ·∇x−∇V (x)·∇v+∆v−v ·∇v

)
(fε,δ∗ηδ) dv dx dt

(A.20.6)

+

∫ ∫
f
[(

v · ∇x −∇V (x) · ∇v + ∆v − v · ∇v

)
χε

]
(fε,δ ∗ ηδ) dv dx dt

(A.20.7) +2

∫ ∫
fχε∇vχε · ∇v(fε,δ ∗ ηδ) dv dx dt.

For any given ε > 0, all the functions involved are restricted to
a compact set Kε in the variable X = (x, v), uniformly in δ ≤ 1.
Now use the identities ∇(g ∗ η) = (∇g) ∗ η, ∆(g ∗ η) = (∆g) ∗ η,∫

g(h ∗ η) =
∫

h(g ∗ η) to rewrite (A.20.5) as

(A.20.8)

∫ ∫
fε,δ

(
v · ∇x −∇V (x) · ∇v + ∆v − v · ∇v

)
fε,δ dv dx dt

+

∫ ∫
fχε

[
ξ · ∇(fε,δ ∗ ηδ) − (ξ · ∇fε,δ) ∗ ηδ

]
,

where ξ is a temporary notation for the vector field (v,−∇V (x) − v).
By integration by parts, the first integral in (A.20.8) can be rewritten
as
(A.20.9)

−
∫ ∫

|∇vfε,δ|2 −
1

2

∫ ∫
(v · ∇v)f

2
ε,δ = −

∫ ∫
|∇vfε,δ|2 +

n

2

∫ ∫
f 2

ε,δ.

Now we should bound

(A.20.10)
∥∥∥ξ · ∇(fε,δ ∗ ηδ) − (ξ · ∇fε,δ) ∗ ηδ

∥∥∥
L2

=

∥∥∥∥
∫

[ξ(X) − ξ(Y )] · ∇fε,δ(Y ) ηδ(Y − X)

∥∥∥∥
L2(dX)

.

We shall estimate the contributions of v · ∇x, v · ∇v and ∇xV · ∇v

separately. First, with obvious notation,
∥∥[v · ∇x, ηδ∗] fε,δ

∥∥
L2

=
∥∥∥
∫

(v − w) · ∇xfε,δ(y, w) ηδ1(x − y) ηδ2(v − w) dw dy
∥∥∥

L2

=
∥∥∥
∫

fε,δ(y, w) (v − w) · ∇xηδ1(x − y) ηδ2(v − w) dw dy
∥∥∥

L2
.
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Inside the integral, one has |v−w| ≤ δ2, |x−y| ≤ δ1, and also |∇xηδ1 | =

O(δ
−(n+1)
1 ), ηδ2 = O(δ−n

2 ); so, all in all,

∥∥[v · ∇x, ηδ∗] fε,δ

∥∥
L2 ≤ C

δ2

δ1

∥∥∥
1

δn
1 δn

2

∫
fε,δ(y, w) 1|x−y|≤δ11|v−w|≤δ2 dw dy

∥∥∥
L2

≤ C
δ2

δ1

‖fε,δ‖L2

≤ C
δ2

δ1
‖f‖L2,

where the last two inequalities follow from Young’s convolution inequal-
ity.

Next,

∥∥[v · ∇v, ηδ∗]fε,δ

∥∥
L2

=
∥∥∥
∫

(v − w) · ∇vfε,δ(y, w) ηδ1(x − y) ηδ2(v − w) dw dy
∥∥∥.

Using the fact that |v−w| ≤ δ2 inside the integral and applying Young’s
convolution inequality as before, we find

∥∥[v · ∇v, ηδ∗]fε,δ

∥∥
L2 ≤ C δ2‖∇vfε,δ‖L2 ≤ C δ2‖∇vf‖L2.

Finally,
∥∥[∇xV · ∇v, ηδ∗]fε,δ

∥∥
L2

=
∥∥∥
∫

[∇V (x) −∇V (y)] · ∇vfε,δ(y, w) ηδ1(x − y) ηδ2(v − w) dw dy
∥∥∥

L2

≤ C sup
{
|∇V (x) −∇V (y)|; |x − y| ≤ δ1; x, y ∈ Kε1

}
‖∇vfε,δ‖L2

≤ C θε1(δ1) ‖∇vfε,δ‖L2 ,

where θε stands for the modulus of continuity of ξ on the compact set
Kε. In all these estimates, the L2 norm was taken with respect to all
variables t, x, v. The conclusion is that the L2 norm in (A.20.10) is
bounded like

(A.20.11) O

(
δ2

δ1

‖f‖2
L2 + δ2‖∇vf‖L2 + θε1(δ1)‖∇vf‖L2

)
.

Next, since ‖∇vχε‖L∞ ≤ Cε2, it is possible to bound (A.20.7) by

(A.20.12)
Cε2‖fχε‖L2‖∇v(fε,δ ∗ ηδ)‖L2 ≤ Cε2‖f‖L2(‖∇vf‖L2 + ‖f‖L2).
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Finally, the terms in the integrand of (A.20.6) can be bounded with
the help of the inequalities

|v · ∇xχε(x, v)| ≤ C|v|ε1, |∇V (x) · ∇vχε(x, v)| ≤ Cε2M(ε−1
1 ),

|∆vχε(x, v)| ≤ C ε2
2, |v · ∇vχε(x, v)| ≤ C|v|ε2,

where M(R) := sup{|∇V (x)|; |x| ≤ 2R}. Then, by Cauchy–Schwarz
again, (A.20.6) can be bounded by

C
[
ε1+ε2(1+M(ε−1

1 ))
]√∫ ∫

f 2|v|2 dv dx dt

√∫ ∫
(fε,δ ∗ ηδ)2 dv dx dt.

Since |v|2 ≤ 2E − 2(inf V ), in the end (A.20.6) is controlled by
(A.20.13)

C
[
ε1 + ε2(1 + M(ε−1

1 ))
] √∫ ∫

f 2E dv dx dt

√∫ ∫
f 2 dv dx dt.

Plugging the bounds (A.20.9), (A.20.13) and (A.20.12) into (A.20.4),
we conclude that

(A.20.14)
1

2

(∫
f 2

ε,δ(T, x, v) dv dx −
∫

f 2
ε,δ(0, x, v) dv dx

)

≤ −
∫ ∫

|∇vfε,δ|2(t, x, v) dv dx dt +
n

2

∫ ∫
f 2

ε,δ(t, x, v) dv dx dt

+ C
(δ2

δ1

‖f‖2
L2 + δ2‖f‖L2 ‖∇vfε,δ‖L2 + θε1(δ1)‖∇vfε,δ‖L2‖fε,δ‖L2

)

+ C(ε1 + ε2M(ε−1
1 ))‖f(1 + E)‖2

L2,

where all the L2 norms in the right-hand side are with respect to
dv dx dt. Now let δ2 → 0, then δ1 → 0, then ε2 → 0, then ε1 → 0,
then δ → 0: all the error terms in the right-hand side of (A.20.14)
vanish in the limit, and fε,δ converges to f almost everywhere and in
L2(dv dx dt). So

∫
f 2(T, x, v) dv dx ≤ lim inf

∫
f 2

ε,δ(T, x, v) dv dx

≤ lim inf

[∫
f 2

ε,δ(0, x, v) dv dx +
n

2

∫ ∫
f 2

ε,δ(t, x, v) dv dx dt

]

=

∫
f 2(0, x, v) dv dx +

n

2

∫ ∫
f 2(t, x, v) dv dx dt.

By Gronwall’s lemma,

‖f(t, ·)‖L2(Rn×Rn) ≤ e
nt
4 ‖f(0, ·)‖L2(Rn×Rn),
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which concludes the argument. �

Remark A.7. Just as in [32, Proposition 5.5], the particular struc-
ture of the Fokker–Planck equation was mainly used in the estimate
|∇V (x) · ∇vχε| ≤ ε2M(ε−1

1 ). It would be interesting to understand to
what extent this computation can be generalized to larger classes of
linear equations, and whether this has anything to do with the hypoel-
liptic structure.

A.21. Some methods for global hypoellipticity

This Appendix is devoted to various hypoelliptic regularization es-
timates for the Fokker–Planck equation. To get a good intuition of
the equation, or to test the optimality of certain results, it is good to
remember that the fundamental solution can be explicitly computed
when the confining potential is quadratic; see e.g. [47, pp. 238–240]
or [14, Section 5]. For the convenience of the reader I shall recall
the result in the simple case when there is neither confining nor fric-
tion (this simplification does not alter the short-time properties of the
equation): it was worked out by Kolmogorov [39] that the fundamental
solution of the operator ∂t + v · ∇xf − θ ∆v, starting from the initial
measure δ(x0,v0), is

(3π2θ)−n t−2n exp

[
− 1

π2θ

(
3 |x − (x0 + tv0)|2

t3

−3 [x − (x0 + tv0)] · (v − v0)

t2
+

|v − v0|2
t

)]
.

For heuristic purposes this solution may be replaced by

(A.21.1) t−2n exp

[
−c

( |x − (x0 + tv0)|2
t3

+
|v − v0|2

t

)]
.

From this representation one can get many short-time smoothness esti-
mates, but of course this will work only for quadratic potentials, or per-
turbations thereof [14, Section 5]. Then the problem arises to recover
as much as possible of these estimates without using the fundamental
solution, but using instead robust functional tools.

Previous work in this area has been done by a number of authors,
but they were mainly concerned with local estimates [36, 38, 49]; the
most notable exceptions are the recent paper by Bouchut [7] and the
works by Helffer, Hérau and Nier [32, 34]. The history of the subject
is reviewed in those references. The methods considered in the present
Appendix seem to be new, and can certainly be extended to more
general classes of equations; they are mainly based on a combination
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of differential inequalities and functional inequalities. At the same
time as I was working on this problem, Hérau [33] was devising related
methods, which I will discuss later.

I shall consider three particular estimates (those which were used
in the present paper): First, the L2(µ) → H1(µ) regularization for
the Fokker–Planck equation in the form (7.1); secondly, the M → Hk

regularization for the Fokker–Planck equation in the form (7.9) (here M
is the space of bounded measures, and Hk is the non-weighted Sobolev
space of order k); and thirdly, an entropic regularization effect of the
form L log L → L|∇ log L|2.

A.21.1. From weighted L2 to weighted H1. In this subection,
V is a C2 potential on Rn, bounded below, γ(v) = (2π)−n/2e−|v|2/2 is
the standard Gaussian, and µ(dx dv) = γ(v)e−V (x) dv dx stands for the
equilibrium measure associated with the Fokker–Planck equation (7.1)
(it might have finite or infinite mass). Apart from that, the only regu-
larity assumption is the existence of a constant C such that

(A.21.2) |∇2V | ≤ C(1 + |∇V |).
As we shall see, this is sufficient to get estimate (7.8), independently
of the fact that e−V satisfies the Poincaré inequality (7.5) or not.

Theorem A.8. Let V be a C2 function on Rn, bounded below
and satisfying (A.21.2). Then, solutions of the Fokker–Planck equa-
tion (7.1) with initial datum h0 satisfy

0 ≤ t ≤ 1 =⇒ ‖∇xh(t, ·)‖L2(µ)+
3∑

k=1

‖∇k
vh(t, ·)‖L2(µ) ≤

C

t3/2
‖h0‖L2(µ)

for some constant C, only depending on n and on the constant C ap-
pearing in (A.21.2).

Remark A.9. These estimates also seem to be new. The proof
can be adapted to cover the case of L1 initial data, at the price of a
deterioration of the exponents. I shall explain this later on.

Remark A.10. Theorem A.8 shows that (with obvious notation)
e−tL maps L2 into H1

x ∩ H3
v with norm O(t−3/2). It also maps L2 into

L2 with norm O(1); so, by interpolation, it maps L2 into Hα
x ∩ H3α

v

with norm O(t−3α/2), for all α ∈ [0, 1]. For α = 2/3 this shows
∥∥∥D t e−t(I+L)

∥∥∥
L2→L2

≤ C, D = (−∆v)
1/2 + (−∆x)

1/6.

Since
∫ 1

0
e−t(1+L) dt is a parametrix for (I + L)−1, and t−β is inte-

grable at t = 0 for β < 1, one can deduce a “stationary” hypoelliptic
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regularity estimate à la Kohn:
(A.21.3)

‖h‖Hα
x (µ) + ‖h‖H3α

v (µ) ≤ C
(
‖h‖L2(µ) + ‖Lh‖L2(µ)

)
, ∀α < 2/3.

With a more refined analysis, it may be possible to catch the optimal
exponent α = 2/3 in the above estimate, but I shall not explore this
somewhat tricky issue here.

Proof of Theorem A.8. As a consequence of Theorem 6 and an
approximation argument which is omitted here, it is sufficient to prove
this theorem for smooth, rapidly decaying solutions. So I shall not
worry about technical justification of the manipulations below. Also,
C will stand for various constants which only depend on n and the
constant in (A.21.2).

The following estimates will be used several times. As a conse-
quence of Lemma A.24 in Appendix A.23, for each v,
∫

Rn

|∇V (x)|2g2(x, v)e−V (x) dx

≤ C

(∫
g2(x, v)e−V (x) dx +

∫
|∇xg(x, v)|2e−V (x) dx

)
;

by integrating this with respect to γ(v) dv one obtains

(A.21.4)

∫

Rn×Rn

|∇V |2g2 dµ ≤ C

(∫
g2 dµ +

∫
|∇xg|2 dµ

)
.

Similarly,

(A.21.5)

∫

Rn×Rn

|v|2g2 dµ ≤ C

(∫
g2 dµ +

∫
|∇vg|2 dµ

)
.

Now we turn to the main part of the argument, which can be de-
composed into four steps.

Step 1: “Energy” estimate in H1
x and H3

v norms combined.

To avoid heavy notation, I shall use symbolic matrix notation which
should be rather self-explanatory, and write

L = v · ∇x −∇V (x) · ∇v − ∆v − v · ∇v.

By differentiating the equation once with respect to x, and three
times with respect to v, one finds

(A.21.6)

(
∂

∂t
+ L

)
∇xh = ∇2

xV (x) · ∇vh,

(A.21.7)

(
∂

∂t
+ L

)
∇3

vh = −3∇2
v∇xh − 3∇3

vh.



A.21. SOME METHODS FOR GLOBAL HYPOELLIPTICITY 145

After taking the scalar product of (A.21.6) by ∇xh and integrating
against µ, we get

(A.21.8)
1

2

d

dt

∫
|∇xh|2 dµ+

∫
|∇v∇xh|2 dµ =

∫
(∇2

xV )∇vh ·∇xh dµ.

Similarly, from (A.21.7) it follows that
(A.21.9)
1

2

d

dt

∫
|∇3

vh|2 dµ+

∫
|∇4

vh|2 dµ = −3

∫
|∇3

vh|2 dµ−3

∫
∇3

vh·∇2
v∇xh dµ.

Let us bound the right-hand side of (A.21.8). Since (∇v)
∗ = −∇v +

v (where the ∗ is for the adjoint in L2(µ)), one has

∫
(∇2

xV )∇vh·∇xh dµ = −
∫

(∇2
xV )h·∇x∇vh dµ−

∫ 〈
(∇2

xV )hv,∇xh
〉
dµ.

By Cauchy–Schwarz and Young’s inequality,

−
∫

(∇2
xV )h · ∇x∇vh dµ ≤

∫
|∇2

xV |2h2 dµ +
1

4

∫
|∇x∇vh|2 dµ.

Thanks to (A.21.4), this can be bounded by

C

(∫
|∇xh|2 dµ +

∫
h2 dµ

)
+

1

4

∫
|∇x∇vh|2 dµ.

By Cauchy–Schwarz inequality again,
(A.21.10)

−
∫ 〈

(∇2
xV )hv, ∇xh

〉
dµ ≤

√∫
|∇2

xV |2h2 dµ

√∫
|v|2|∇xh|2 dµ.

In view of (A.21.5),

(A.21.11)
1

2

∫
|v|2|∇xh|2 dµ ≤ C

(∫
|∇xh|2 dµ +

∫
|∇v∇xh|2 dµ

)
.

By (A.21.10), (A.21.11) and Young’s inequality, there is a constant C
such that

−
∫ 〈

(∇2
xV )hv, ∇xh

〉
dµ ≤ C

(∫
|∇2

xV |2h2 dµ +

∫
|∇xh|2 dµ

)

+
1

4

∫
|∇v∇xh|2 dµ.
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All in all,

(A.21.12)
1

2

d

dt

∫
|∇xh|2 dµ +

1

2

∫
|∇v∇xh|2 dµ

≤ C

(∫
|∇2

xV |2 h2 dµ +

∫
|∇xh|2 dµ

)
.

The right-hand side in (A.21.9) is estimated in a similar way:

−3

∫
∇3

vh · ∇2
v∇xh dµ = 3

∫
∇4

vh · ∇v∇xh dµ− 3

∫
∇3

vh · v∇v∇xh dµ;

then on one hand

3

∫
∇4

vh · ∇v∇xh dµ ≤ 1

4

∫
|∇4

vh|2 dµ + 9

∫
|∇v∇xh|2 dµ;

on the other hand, again by (A.21.5),

−3

∫
∇3

vh · v∇v∇xh dµ ≤ 3

√∫
|v|2|∇3

vh|2 dµ

√∫
|∇v∇xh|2 dµ

≤ C

√∫
|∇4

vh|2 dµ +

∫
|∇3

vh|2 dµ

√∫
|∇v∇xh|2 dµ

≤ 1

4

∫
|∇4

vh|2 dµ +
1

4

∫
|∇3

vh|2 dµ + C

∫
|∇v∇xh|2 dµ.

So there is a constant C such that

(A.21.13)
1

2

d

dt

∫
|∇3

vh|2 dµ +
1

2

∫
|∇4

vh|2 dµ

≤ C

(∫
|∇v∇xh|2 dµ +

∫
|∇3

vh|2 dµ +

∫
|∇4

vh|2 dµ

)
.

As a consequence of (A.21.12) and (A.21.13) it is possible to find nu-
merical constants a, K, C > 0 (only depending on n and C in (A.21.2))
such that

(A.21.14)
d

dt

(∫
|∇xh|2 dµ + a

∫
|∇3

vh|2 dµ

)

≤ −K

(∫
|∇4

vh|2 dµ +

∫
|∇v∇xh|2 dµ

)

+ C

(∫
h2 dµ +

∫
|∇xh|2 dµ +

∫
|∇3

vh|2 dµ

)
.

This concludes the first step.
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Step 2: Time-behavior of the mixed derivative.

In this step I shall focus on the mixed derivative integral
∫
∇xh ·

∇vh dµ. By differentiating the equation with respect to x and multiply-
ing by ∇vh, differentiating the equation with respect to v and multiply-
ing by ∇xh, then using the chain rule and the identity F∆vG+G∆vF =
∆v(FG) − 2∇vF · ∇vG, one easily obtains

(
∂

∂t
+ L

)
(∇xh · ∇vh) =

〈
∇2

xV · ∇vh,∇vh
〉

− 2∇v∇xh · ∇2
vh dµ − |∇xh|2 −∇xh · ∇vh.

After integration against µ, this yields

(A.21.15)
1

2

d

dt

∫
∇xh·∇vh dµ =

∫ 〈
∇2

xV · ∇vh,∇vh
〉
dµ−2

∫
∇v∇xh·∇2

vh dµ

−
∫

|∇xh|2 dµ −
∫

∇xh · ∇vh dµ.

The first term in the right-hand side need some rewriting: Since (∇v)
∗ =

−∇v + v,
∫ 〈

∇2
xV · ∇vh,∇vh

〉
dµ = −

∫
∇2

xV h∇2
vh dµ −

∫
h
〈
∇2

xV v,∇vh
〉
dµ

≤
√∫

|∇2
xV |2h2 dµ

√∫
|∇2

vh|2 dµ+

√∫
|∇2

xV |2h2 dµ

√∫
|v|2|∇vh|2 dµ.

With the help of Young’s inequality and (A.21.5) again, this can be
bounded by

ε

∫
|∇2

xV |2h2 dµ + Cε

(
+

∫
|∇2

vh|2 dµ +

∫
|∇vh|2 dµ

)
.

By Lemma A.24, if ε is small enough then this is bounded by

1

4

(∫
|∇xh|2 dµ +

∫
h2 dµ

)
+ C

(∫
|∇vh|2 dµ +

∫
|∇2

vh|2 dµ

)
.

Now for the second term in the right-hand side of (A.21.15), we
just write

−2

∫
∇v∇xh∇2

vh dµ ≤
∫

|∇v∇xh|2 dµ +

∫
|∇2

vh|2 dµ.
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Summarizing all the above computations: There is a numerical con-
stant C, only depending on n and C in (A.21.2), such that

(A.21.16)
d

dt

∫
∇xh · ∇vh dµ ≤ −1

2

∫
|∇xh|2 dµ

+ C

(∫
h2 dµ +

∫
|∇vh|2 dµ +

∫
|∇2

vh|2 dµ +

∫
|∇x∇vh|2 dµ

)
.

This concludes the second step of the proof.

Remark A.11. We could also have conducted the computations in
the following way:

−2

∫
∇v∇xh∇2

vh dµ = 2

∫
∇xh · ∇3

vh dµ − 2

∫
∇xh · v∇2

vh dµ.

Then on one hand,

2

∫
∇xh · ∇3

vh dµ ≤ 1

4

∫
|∇xh|2 dµ + 4

∫
|∇3

vh|2 dµ;

on the other hand, just as before,

−2

∫
∇xh·v∇2

vh dµ

≤ 1

4

∫
|∇xh|2 dµ + 4

∫
|v|2|∇2

vh|2 dµ

≤ 1

4

∫
|∇xh|2 dµ + C

(∫
|∇2

vh|2 dµ +

∫
|∇3

vh|2 dµ

)
.

By doing so, we would have obtained the same result as (A.21.16), ex-
cept that the integral

∫
|∇x∇vh|2 dµ would be replaced by

∫
|∇3

vh|2 dµ.
Then the rest of the proof would have worked through.

Step 3: Interpolation inequalities

If h is a function of v, lying in L2(γ), one can write h =
∑

k ckHk,
where Hk are normalized Hermite polynomials and k are multi-indices
in Nn; then
∫

h2 dγ =
∑

k

c2
k,

∫
|∇vh|2 dµ =

∑
|k|2c2

k,

∫
|∇2

vh|2 dµ =
∑

|k|4c2
k, etc.

(here |k|2 =
∑

k2
ℓ , 1 ≤ ℓ ≤ n and |k|4 = (|k|2)2). Then, by Hölder’s

inequality (in the k variable), one can prove interpolation inequalities
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such as
∫

|∇vh|2 dγ ≤ C

(∫
h2 dγ

)2/3(∫
|∇3

vh|2 dγ

)1/3

.

Now if h = h(x, v) is a function of both variables x and v, one can
apply the previous inequality to h(x, ·) for each x, then integrate with
respect to e−V (x) dx, and apply Hölder’s inequality in the x variable,
to find

∫
|∇vh|2 dµ ≤ C

(∫
h2 dµ

)2/3(∫
|∇3

vh|2 dµ

)1/3

.

Similarly,
∫

|∇j
vh|2 dµ ≤ C

(∫
h2 dµ

)1−(j/4)(∫
|∇4

vh|2 dµ

)j/4

, 1 ≤ j ≤ 3.

Step 4: Conclusion

Now we can turn to the proof of estimate (7.8). Without loss of
generality, assume

∫
h2 dµ = 1 at time 0. Then, since this quantity is

nonincreasing with time,
∫

h2(t, ·) dµ ≤ 1 for all t ≥ 0. By combining
the results of Steps 1, 2 and 3, we discover that the quantities

X :=

∫
|∇xh|2 dµ, Yj :=

∫
|∇j

vh|2 dµ (0 ≤ j ≤ 4),

M :=

∫
∇xh · ∇vh, W =

∫
|∇x∇vh|2,

viewed as functions of t, solve the system of differential inequalities

(A.21.17)





d

dt
(X + aY3) ≤ −K(Y4 + W ) + C(1 + X + Y3)

d

dt
M ≤ −KX + C(1 + Y1 + Y2 + W )

|M| ≤
√

X Y1; Y1 ≤ CY
1/2
2 ≤ C ′Y

1/3
3 ≤ C ′′Y

1/4
4 .

It is a consequence of Lemma A.26 in Appendix A.23 that solutions
of (A.21.17) satisfy

0 ≤ t ≤ 1 =⇒ X(t) + Y (t) ≤ A

t3

for some computable constant A. As a consequence, for 0 ≤ t ≤ 1,∫
|∇xh|2 dµ = O(t−3),

∫
|∇3

vh|2 dµ = O(t−3).



150

Then, by interpolation
∫
|∇vh|2 = O(t−1),

∫
|∇2

vh|2 = O(t−2). This
concludes the proof of (7.8). �

A.21.2. Variants. Here I studied the regularization effect by means
of a system of differential inequalities. It is natural to ask whether one
can do the same with just one differential inequality. The answer is
affirmative: It is possible to use a trick similar to the one in the proof
of Theorem 18, that is, add a carefully chosen lower-order term which
is derived from the mixed derivative

∫
∇xh · ∇vh.

A first possibility is to consider the Lyapunov functional

E(h) =

∫
h2 dµ + a

∫
|∇xh|2 dµ + 2b

∫
∇x(D

1/3
x h) · ∇v(D

1/3
x h) dµ

+ c

∫
|∇3

vh|2 dµ,

where Dx = (−∆x)
1/2. Then by using computations similar to the ones

in Subsection A.21.1, plus estimates on the commutator [D
1/3
x ,∇V ],

one can establish the following a priori estimate along the Fokker–
Planck equation: For well-chosen positive constants a, b, c,

d

dt
E(h) ≤ −KE(h)4/3, h = e−tLh0.

The desired result follows immediately.
One drawback of this method is the introduction of fractional deriva-

tives. There is a nice variant due to Hérau [33] in which one avoids
this by using powers of t:

F(t, h) =

∫
h2 dµ+at

∫
|∇vh|2 dµ+2bt2

∫
∇vh·∇xh+ct3

∫
|∇xh|2 dµ.

Then one can estimate the time-derivative of F(t, e−tLh0) by means of
computations similar to those in Subsection A.21.1, and the inequalities

t

∣∣∣∣
∫

(∇vh · ∇xh) dµ

∣∣∣∣ ≤ C

∫
|∇vh|2 dµ + εt2

∫
|∇xh|2 dµ;

t2
∣∣∣∣
∫

∇x∇vh · ∇2
vh dµ

∣∣∣∣ ≤ Ct

∫
|∇2

vh|2 dµ + εt3
∫

|∇x∇vh|2 dµ.
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In the end, if a, b, c are well-chosen, one obtains, with the shorthand
h = e−tLh0,

d

dt
F(t, h) ≤ −K

(∫
|∇vh|2 dµ + t

∫
|∇2

vh|2 dµ + t2
∫

|∇xh|2 dµ

+t3
∫

|∇x∇vh|2 dµ

)
.

It follows that F(t, h) is nonincreasing, and therefore
∫

|∇vh|2 dµ = O(t−1),

∫
|∇xh|2 dµ = O(t−3).

The conclusion is not so strong as the one we had before, since we only
have estimates on the first-order derivative in v. But the exponents are
again optimal, and it is possible to adapt the method and recover esti-
mates on higher-order derivatives. Furthermore, estimates on

∫
|∇xh|2

and
∫
|∇vh|2 are exactly what is needed for Theorem 37 to apply.

Hérau’s method lends itself very well to an abstract treatment. For
instance, let us consider an abstract operator L = A∗A + B, satisfying
Assumptions (i)–(iii) in Theorem 18, then the following decay rates (in
general optimal) can be proven, at least formally:

(A.21.18) ‖Ae−tLh‖ = O(t−1/2); ‖Ce−tLh‖ = O(t−3/2).

To show this, introduce

F(t, h) := ‖e−tLh‖2+at‖Ae−tLh‖2+2bt2〈Ae−tLh, Ce−tLh〉+ct3‖Ce−tLh‖2.

Then, we can perform computations similar to the ones in Subsec-
tion 4.2, except that now there are extra terms coming from the time-
dependence of the coefficients a, b, c. Writing h for e−tLh, we have, if
a, b/a, c/b, c2/b, b2/ac are small enough:

(A.21.19)
dF(t, h)

dt
≤ −κ

(
‖Ah‖2 + at‖A2h‖2 + bt2‖Ch‖2 + ct3‖CAh‖2

)

+ a‖Ah‖2 + 4bt〈Ah, Ch〉 + 3ct2‖Ch‖2,

were κ is a positive number. When 0 ≤ t ≤ 1, the positive terms in
the right-hand side of (A.21.19) can all be controlled by the negative
terms if a, b and c/b are small enough. Then

dF(t, h)

dt
≤ −K(‖Ah‖2 + ‖A2h‖2 + ‖Ch‖2).

In particular, F is a nonincreasing function of t, and then the desired
bounds ‖Ah‖2 = O(t−1), ‖Ch‖2 = O(t−3) follow (as well as the bound
‖A2h‖2 = O(t−2)).
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The very same scheme of proof allows to establish a regularization
theorem similar to Theorem 24:

Theorem A.12. Let H be a Hilbert space, A : H → Hn and
B : H → H be unbounded operators, B∗ = −B, let L := A∗A + B.
Assume the existence of Nc ∈ N and (possibly unbounded) operators
C0, C1, . . . , CNc+1, R1, . . . , RNc+1 and Z1, . . . , ZNc+1 such that

C0 = A, [Cj , B] = Zj+1Cj+1+Rj+1 (0 ≤ j ≤ Nc), CNc+1 = 0,

and, for all k ∈ {0, . . . , Nc},
(i) [A, Ck] is bounded relatively to {Cj}0≤j≤k and {CjA}0≤j≤k−1;

(ii) [Ck, A
∗] is bounded relatively to I and {Cj}0≤j≤k;

(iii) Rk is bounded relatively to {Cj}0≤j≤k−1 and {CjA}0≤j≤k−1;

(iv) There are positive constants λj, Λj such that λjI ≤ Zj ≤ ΛjI.

Then the following bound holds true along the semigroup e−tL:

∀k ∈ {0, . . . , Nc}, ∀t ∈ (0, 1], ‖e−tLh‖ ≤ Ck
‖h‖
tk+ 1

2

,

where Ck only depends on the constants appearing implicitly in As-
sumptions (i)–(iv).

Remark A.13. A reasoning similar to Remark A.10 shows that the
exponents 1/(k + 1/2) cannot be improved. Indeed, in Hörmander’s
theory, the weight attributed to the commutator Ck would be 2k + 1,
and the regularity estimates established by Rothschild and Stein [49],
in general optimal, provide regularization by an order 2/(2k + 1) =
1/(k + 1/2).

Remark A.14. I shall show below how Hérau’s method can be
adapted to yield regularization from L log L initial datum. On the
other hand, it is not clear that it can be used to establish regularization
from measure initial data.

A.21.3. Higher regularity from measure initial data. Now
I shall explain how to extend the previous results by (a) establishing
Sobolev regularity of higher order, (b) removing the assumption of L2

integrability for the initial datum.
I shall only consider the case when ∇V is Lipschitz, for two reasons:

(ii) this ensures the uniqueness of the solution of the Fokker–Planck
equation starting from a measure initial datum; (ii) the theorems of
convergence to equilibrium studied in the present paper use the Lips-
chitz regularity of ∇V anyway. To simplify the presentation I shall also
assume that all derivatives of ∇V are uniformly (in x) bounded, even
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if in fact one only needs a finite number of such bounds, depending on
the degree of regularity that one is aiming at.

As before, the equation under study is

(A.21.20) ∂tf + v · ∇xf −∇V (x) · ∇vf = ∆vf + v · ∇vf + nf.

This equation admits a unique solution as soon as f0 is a finite non-
negative measure (say a probability measure) with finite energy, and it
is easy to prove the propagation of regularity and of moment bounds.

So to establish regularization in higher-order Sobolev space Hk
x(Hℓ

v)
it is enough to prove, for smooth and rapidly decaying solutions, an a
priori estimate like

‖f(t, ·)‖Hk
xHℓ

v(Rn
x×Rn

v ) ≤
C

tκ

with constants C and κ that do not depend on the regularity of f0.
Here is a precise result:

Theorem A.15 (regularization from measure initial data). Let
µ(dx dv) be a probability measure on Rn×Rn, and let V ∈ C∞(Rn) such
that sup |∇kV (x)| < +∞ for all k ≥ 2. Then there is a unique solution
f(t, x, v) of (A.21.20), such that the probability measure µt(dx dv) =
f(t, x, v) dx dv belongs to C(R+; P (Rn×R

n)) and limt→0 µt = µ. More-
over, for any m ∈ N there are j = j(m, n) ∈ N, and positive constants
κ = κ(m, n), C = C(m, n, ‖∇2V ‖Cj) such that

(A.21.21) 0 < t < 1 =⇒
∑

k+3ℓ≤m

‖f(t, ·)‖Hk
xHℓ

v
≤ C

tκ
.

Proof of Theorem A.15. The solution of (A.21.20) can be seen
as the law at time t of a stochastic process solving the stochastic differ-
ential equation dxt = vt dt, dvt =

√
2 dWt−vt dt−∇V (xt) dt, which by

assumption has uniformly Lipschitz coefficients. It is easy to deduce
the existence and uniqueness of the solution. Then it is sufficient to
establish (A.21.21) as an a priori estimate on C∞ solutions.

As usual, C and K will stand for various constants depending only
on n and V . As in Subsection A.21.1 the a priori estimate is divided
into four steps. The conservation of mass (that is, the preservation of∫

f dx dv) along equation (A.21.20) will be used several times.

Step 1: “Energy” estimate in higher order Sobolev spaces.
Let k and ℓ be given integers (k will be the regularity in x and ℓ the

regularity in v). Computations similar to those in Subsection A.21.1
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(differentiating the equation and integrating) yield

d

dt

∫
|∇k

x∇ℓ
vf |2 dx dv ≤ −K

∫
|∇k

x∇ℓ+1
v f |2 dx dv

+ C

∫
|∇k

x∇ℓ
vf |2 dx dv + C

∫
|∇k+1

x ∇ℓ−2
v f |2 dx dv

+ C
∑

1≤i≤k

∫
|∇k−i

x ∇ℓ
vf |2|∇i+1

x V |2 dx dv.

By assumption |∇i
xV | is bounded for any i, so the above equation

reduces to

d

dt

∫
|∇k

x∇ℓ
vf |2 ≤ −K

∫
|∇k

x∇ℓ+1
v f |2 + C

∑

j≤k

∫
|∇j

x∇ℓ
vf |2

+ C

∫
|∇k+1

x ∇ℓ−2
v f |2.

Then one can repeat the same computation with (k, ℓ) replaced by
(k +1, ℓ−2) and then (k +2, ℓ−4), etc. By an easy induction, for any
integer m, we can find positive constants K, C, a0 = 1, a1, . . . , am such
that

d

dt

m∑

k=0

ak

∫
|∇k

x∇3(m−k)
v f |2 dx dv ≤ −K

m∑

k=0

∫
|∇k

x∇3(m−k)+1
v f |2 dx dv

+ C
m∑

k=0

∑

j≤k

∫
|∇j

x∇3(m−k)
v f |2 dx dv.

Repeating the same operation for lower order terms (that is, de-
creasing m), for each couple of nonnegative integers (k, ℓ) with 3k+ℓ ≤
3m we can find a positive constant ak,ℓ such that

d

dt

∑

3k+ℓ≤3m

ak,ℓ

∫
|∇k

x∇ℓ
vf |2 dx dv ≤ −K

∫
|∇3m+1

v f |2 dx dv

+ C
∑

3k+ℓ≤3m

∫
|∇k

x∇ℓ
vf |2 dx dv.

Then we can define an “energy functional” of order m, which controls
the L2-regularity of f up to order m in x and 3m in v:

(A.21.22) Em(f) =
∑

3k+ℓ≤3m

ak,ℓ

∫
|∇k

x∇ℓ
vf |2 dx dv.
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(Recall, to avoid any confusion, that
∫
|∇k

x∇ℓ
vf |2 is the sum of all terms∫

(∂k1
x1

. . . ∂kn
xn

∂ℓ1
v1

. . . ∂ℓn
vn

f)2 with k1 + . . . + kn = k, ℓ1 + . . . + ℓn = ℓ.)
Then the a priori estimate on the Fokker–Planck equation (A.21.20)

can be recast as

(A.21.23)
d

dt
Em(f) ≤ −K

∫
|∇3m+1

v f |2 dx dv + CEm(f).

The important terms in Em are the extremal ones, that is for (k, ℓ) =
(m, 0), (0, 3m) or (0, 0). All the other ones can be controlled by these
three extremal terms; to see this, it suffices to apply Hölder’s inequality
in Fourier space: Denoting by ξ the conjugate variable to x and by η
the conjugate variable to v, one has
∫

|∇k
x∇ℓ

vf |2 dx dv = C

∫
|ξ|2k|η|2ℓ|f̂ | dξ dη

≤ C

(∫
|ξ|2m|f̂ |2 dξ dη

) k
m
(∫

|η|6m|f̂ |2 dξ dη

) ℓ
3m

(∫
|f̂ |2 dξ dη

)1−( k
m

+ ℓ
3m)

= C

(∫
|∇m

x f |2 dx dv

) k
m
(∫

|∇3m
v f |2 dx dv

) ℓ
3m

(∫
f 2 dx dv

)1−( k
m

+ ℓ
3m)

.

It follows easily that there are positive constants K, C such that

(A.21.24) K

(∫
|∇m

x f |2 +

∫
|∇3m

v f |2 +

∫
f 2

)
≤ Em(f)

≤ C

(∫
|∇m

x f |2 +

∫
|∇3m

v f |2 +

∫
f 2

)
.

Step 2: Mixed derivatives
Define the higher order mixed derivative functional

Mm(f) =

∫
∇m

x f · ∇m−1
x ∇vf(A.21.25)

=
∑

1≤i1,...,im≤n

∫
∂mf

∂xi1 . . . ∂xim

∂mf

∂xi1 . . . ∂xim−1
∂vim

.



156

By computations in the same style as in Step 2 of Subsection A.21.1,
one can establish

d

dt
Mm(f) ≤ −K

∫
|∇m

x f |2 dx dv + C
∑

k<m, 3k+ℓ≤3m

∫
|∇k

x∇ℓ
vf |2.

Each of the terms appearing in the latter sum can then be estimated
by elementary interpolation inequalities as in Step 1: If k < m then

∫
|∇k

x∇ℓ
vf |2 ≤ ε

∫
|∇m

x f |2 + C

(∫
|∇3m

v f |2 +

∫
f 2

)
,

where ε is an arbitrarily small positive number. The conclusion is that
(A.21.26)
d

dt
Mm(f) ≤ −K

∫
|∇m

x f |2 dx dv +C

(∫
|∇3m

v f |2 dx dv +

∫
f 2 dx dv

)
.

Step 3: Interpolation inequalities.

There are two things to check: (i) that Mm is “much smaller” than
Em, and (ii) that

∫
|∇3m

v f |2 is “much smaller” than
∫
|∇3m+1

v f |2. The
difficulty is that we cannot just use interpolation in L2-type spaces.
In replacement, we shall use the anisotropic Nash-type interpolation
inequality exposed in Appendix A.23.

First, by Cauchy–Schwarz,

|Mm(f)| ≤
(∫

|∇m
x f |2

) 1
2
(∫

|∇m−1
x ∇vf |2

) 1
2

.

Then the second term is estimated thanks to Lemma A.25 with λ =
m − 1, µ = 1, λ′ = m, µ′ = 3m:

∫
|∇m−1

x ∇vf |2 ≤
(∫

|∇m
x f |2 +

∫
|∇3m

v f |2
)1−θ (∫

f

)2θ

,

where θ = 2/(3m + 6n) is a positive number. Since the mass
∫

f is
preserved under the time-evolution by the Fokker–Planck equation, we
arrive at the estimate

(A.21.27) |Mm(f)| ≤ CEm(f)1−δ,

where δ = θ/2 is a positive constant.
Next, apply Lemma A.25 again with λ = 0, λ′ = m, µ = 3m,

µ′ = 3m + 1. Noting that (λ/λ′) + (µ/µ′) = 3m/(3m + 1) < 1, we see
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that there exists θ ∈ (0, 1) such that
∫

|∇3m
v f |2 dx dv

≤ C

(∫
|∇m

x f |2 +

∫
|∇3m+1

v f |2 dx dv

)1−θ (∫
f dx dv

)2θ

.

The same estimate holds true for
∫

f 2 (this can be treated by the usual
Nash inequality), and then one can use the fact that

∫
f is preserved

by the Fokker–Planck equation, to obtain the a priori estimate
(A.21.28)∫

|∇3m
v f |2 dx dv+

∫
f 2 dx dv ≤ C

(∫
|∇m

x f |2 +

∫
|∇3m+1

v f |2 dx dv

)1−θ

Step 4: Conclusion
Equations (A.21.24), (A.21.27), (A.21.23), (A.21.28) and (A.21.26)

together show that we can apply Lemma A.26 with E = Em, M = Mm,
X =

∫
|∇m

x f |2, Y =
∫
|∇3m

v f |2 +
∫

f 2, Z =
∫
|∇3m+1f |2. Thus there

are constants C and κ such that Em(ft) ≤ C/t1/κ. This concludes the
proof of the a priori estimate. �

Remark A.16. Keeping track of the constants in the above proof
yields the bound ‖∇m

x f(t)‖2
L2 + ‖∇3m

v f(t)‖2 = O(t−(3m+6n)) for any
m ∈ N (m ≥ 1). This exponent is not optimal, and can be improved
as follows: first apply the above bound with m replaced by m′ > m,
and then use inequality (A.25) to interpolate the norm of index m
(m ≥ 0, possibly noninteger) between the norm of index m′ and the
L1 norm. The result is a bound like O(t−β(n,m,m′)) with β(n, m, m′) =
(3m + 2n)(1 + (4n)/(3m′ + 2n)), and the limit m′ → ∞ provides the
following Sobolev estimate on the density at time t (0 < t < 1):
(A.21.29)
∀m ≥ 0 ‖∇m

x f(t)‖2
L2 + ‖∇3m

v f(t)‖2 = O(t−β), ∀β > 3m + 2n.

The constant in the right-hand side may depend on β but not on the
initial datum, which may be any probability measure. It is natural to
conjecture that the optimal exponent in (A.21.29) is exactly βm,n =
3m + 2n; in the simple case when the potential is quadratic this can
be proven by a direct estimate on the fundamental solution. (Compare
with the bound ‖∇m

x f‖2 + ‖∇m
v f‖2 = O(t−(m+n)) for the usual heat

equation in R2n).

Remark A.17. The particular case m = 0 in (A.21.29) is of par-
ticular interest, since it corresponds to a uniform pointwise bound on



158

the fundamental solution of the equation. In the context of symmetric
operators, such pointwise bounds have been investigated with extreme
care [27, 51], and are known to be very well encoded by Nash in-
equalities in the style of (A.23.4). For instance, for the heat equation
in Rn, the bound ‖f(t)‖2

L2 = O(t−γ) with γ = n/2 is obtained from
θ = 1/(n/2 + 1) in (A.23.4) via γ = (1 − θ)/θ. For the hypoelliptic
diffusion which we are considering, one may ask whether the presum-
ably optimal bound ‖f(t)‖2

L2 = O(t−2n) is captured by a functional
inequality of Nash style. I don’t know the answer to this question, but
if it is affirmative then I claim that the functional inequality must be

(A.21.30)

∫
f 2 ≤ C

(∫
|∇vf |2 +

∫
|D1/2

x D−1/2
v f |2

)1−θ (∫
f

)2θ

,

where all integrals are with respect to dx dv, and

θ =
1

2n + 1
.

The unorthodox Nash-type inequality (A.21.30) can be proven with
the same technique which is used to prove Lemma A.25 later. But I
have been unable to get the desired short-time estimate from (A.21.30)!
A natural strategy was to look for a scalar product 〈 , 〉, defining a
norm equivalent to the L2 norm, such that 〈Lf, f〉 ≥ K (

∫
|∇vf |2 +∫

|D1/2
x D

−1/2
v f |2), and then conclude by Gronwall’s lemma; but it is not

clear that such a scalar product exists (the natural candidate
∫

f 2 +
a
∫

(D−1
v ∇vf) · (D−1

x ∇xf) does not seem to work). This is a borderline

problem: if one replaces D
−1/2
v by Dα

v with α > −1/2, the program
can be carried out, and yields a bound O(t−β) for any β > 2n (which
was already obtained in Remark A.16 by a slightly different, although
closely related, method).

A.21.4. Regularization in an L log L context. If the initial da-
tum is assumed to have finite entropy, then Hérau’s method can be
adapted to yield the regularization in Fisher information sense, with
exponents that are likely to be optimal. Here is a rather general result
in this direction, under the same assumptions as Theorem 28:

Theorem A.18. Let E ∈ C2(RN), such that e−E is rapidly de-
creasing, and µ(dX) = e−E(X) dX is a probability measure on RN . Let
(Aj)1≤j≤m and B be first-order derivation operators with smooth co-
efficients. Denote by A∗

j and B∗ their respective adjoints in L2(µ),
and assume that B∗ = −B. Denote by A the collection (A1, . . . , Am),
viewed as an unbounded operators whose range is made of functions
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valued in Rm. Define

L = A∗A + B =
m∑

j=1

A∗
jAj + B,

and assume that e−tL defines a well-behaved semigroup on a suitable
space of positive functions (for instance, e−tLh and log(e−tLh) are C∞

and all their derivatives grow at most polynomially if h is itself C∞ with
all derivatives bounded, and h is bounded below by a positive constant).

Next assume the existence of an integer Nc ≥ 1, derivation op-
erators C0, . . . , CNc+1 and R1, . . . , RNc+1, and vector-valued functions
Z1, . . . , ZNc+1 (all of them with C∞ coefficients, growing at most poly-
nomially, as their partial derivatives) such that

C0 = A, [Cj , B] = Zj+1 Cj+1+Rj+1 (0 ≤ j ≤ Nc), CNc+1 = 0,

and
(i) [A, Ck] is pointwise bounded relatively to A;
(ii) [Ck, A

∗] is pointwise bounded relatively to I, {Cj}0≤j≤k;
(iii) Rk is pointwise bounded with respect to {Cj}0≤j≤k−1;
(iv) there are positive constants λj , Λj such that λj ≤ Zj ≤ Λj;
(v) [A, Ck]

∗ is pointwise bounded relatively to I, A.

Then the following bound holds true: With the notation h(t) =
e−tLh0,

∀k ∈ {0, . . . , Nc}, ∀t ∈ (0, 1],

∫
h(t)

∣∣Ck log h(t)
∣∣2 dµ ≤ Ck

∫
h0 log h0 dµ

t2k+1
,

where Ck is a constant only depending on the constants appearing im-
plicitly in Assumptions (i)–(v).

Proof. The proof is patterned after the proofs of Theorems 28
and A.12: Write u = log h, f = e−Eh, and introduce the Lyapunov
functional

F(t, h) =

∫
fu +

Nc∑

k=0

(
akt

2k+1

∫
f |Cku|2m+2bkt

2k+2

∫
f〈Cku, Ck+1u〉m

)
.

The computations for dF/dt are the same as in the proof of The-
orem 28, except that now there are additional terms caused by the
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explicit dependence on t. So

(A.21.31)
dF(t, h(t))

dt
≤

−K

(∫
f |Au|2 +

∑

k

akt
2k+1

∫
f |CkAu|2 +

∑

k

bkt
2k+2

∫
f |Ck+1u|2

)

+
∑

k

(2k + 1)akt
2k

∫
f |Cku|2 +

∑

k

(2k + 2)bkt
2k+1

∫
f〈Cku, Ck+1u〉.

Obviously, the additional terms can be controlled by the ones in the
first line of the right-hand side, provided that the ratios ak/bk−1 and

bkt
2k+1/

√
(bk−1t2k)(bkt2k+1) are small enough; the second condition re-

duces to bk/bk−1 small enough. These conditions have been enforced
in the proof of Theorem 28. So all in all, F(t, h(t)) is a nonincreasing
function of t, and the conclusion follows immediately. �

A.22. Local positivity estimates

In this Appendix I shall derive local (strict) positivity estimates
for smooth solutions of linear equations of Fokker–Planck type. Such
estimates are a classical topic for hypoelliptic equations in general,
and are often used in probability theory; in this memoir they were
useful for the proof of Theorem 56. The results established below are
probably not new, but the method is quite flexible and elementary,
relying mainly on the maximum principle. As a main shortcoming, the
positivity estimate will use smoothness, so it does not behave well in
very short time; still it is quite sufficient for our purposes.

In the sequel, I shall use the notation

Br(x0, v0) =
{

(x, v) ∈ R
n × R

n; |v − v0| ≤ r, |x − x0| ≤ r3
}
.

Theorem A.19 (spreading of positivity). Let f = f(t, x, v) be a
classical nonnegative solution of

(A.22.1)
∂f

∂t
+ v · ∇xf − ∆vf = A(t, x, v) · ∇vf + B(t, x, v) f

in [0, T ) × Ω, where Ω is an open subset of R
n
x × R

n
v , and A : [0, T ) ×

Ω → Rn, B : [0, T ) × Ω → R are bounded continuous functions. Let
(x0, v0) ∈ Ω, V ≥ |v0|, A ≥ ‖A‖L∞, B ≥ ‖B‖L∞. Then for any r, τ > 0
there are constants λ, K > 0, only depending on n, A, B and r2/τ , with
the following property: If Bλr(x0, v0) ⊂ Ω, τ ≤ min(1, T, r3/(4V )) and
f ≥ δ > 0 in [0, τ)×Br(x0, v0), then f ≥ K δ in [τ/2, τ)×B2r(x0, v0).

Theorem A.19 implies, via covering arguments in all variables t, x, v:
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Corollary A.20. If f ≥ 0 solves (A.22.1) in [0, T ) × Ω and f ≥
δ > 0 in [0, T )×Br(x0, v0), then for any compact set K ⊂ Ω containing
(x0, v0) and for any t0 ∈ (0, T ), we have f ≥ δ′ > 0 in [t0, T ) × K,
where δ′ only depends on n, A, B, K, Ω, x0, v0, r, t0, δ.

Now assume that f has mass at least m > 0 in some compact
subset K of Ω. Then for each t0 > 0 there is some (x0, v0) ∈ K
such that f(t0, x0, v0) ≥ m/|K|, where |K| stands for the Lebesgue
measure of K. If moreover f is L-Lipschitz in (t, x, v) then there are
r > 0 and τ > 0, controlled from below, such that f ≥ m/(2|K|)
on [t0, t0 + τ ] × Br(x0, v0). Combining this with Corollary A.20 and a
covering argument again, we arrive at the following useful result (‖f‖Lip

stands for the Lipschitz norm of f):

Corollary A.21 (uniform local lower bounds in positive time).
If f ≥ 0 solves (A.22.1) in [0, T ) × Ω and K is a compact subset
of Ω such that (i)

∫
K

f dx dv ≥ m > 0, (ii) ‖f‖Lip([0,T ]×O) ≤ L for
some neighborhood O of K in Ω, then for any t0 > 0 there is δ =
δ(n, A, B, K, O, Ω, m, L, t0) > 0 such that f ≥ δ on [t0, T ) × K.

In the end the Lipschitz assumption in the above corollary can of
course be removed by a hypoellipticity argument. Now let us prove
Theorem A.19. The argument is based on the maximum principle in
the style of [13, Section 10], together with an “algebraic trick” of the
kind which I have used at various places in this memoir (and a bit of
juggling with parameters).

Proof of Theorem A.19. Let g(t, x, v) = eB tf(t, x, v); then g ≥
f and Lg ≥ 0 in (0, T ) × Ω, where

L =
∂

∂t
+ v · ∇x − ∆v − A(t, x, v) · ∇v.

Let us construct a particular subsolution for L. In the sequel, Br

will stand for Br(x0, v0). For t ∈ (0, τ ] and (x, v) ∈ Ω \ Br let

Q(t, x, v) = a
|v − v0|2

2t
−b

〈
v − v0, x − Xt(x0, v0)

〉

t2
+c

|x − Xt(x0, v0)|2
2t3

,

where Xt(x0, v0) = x0+tv0 (abbreviated Xt in the sequel) is the position
at time t of the geodesic flow starting from (x0, v0), and a, b, c > 0 will
be chosen later on. Let further

ϕ(t, x, v) = δ e−µ Q(t,x,v) − ε,

where µ, ε > 0 will be chosen later on. Let us assume b2 < ac, so that
Q is a positive definite quadratic form in the two variables v − v0 and
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x − Xt. Then

Lϕ = µ δ e−µQ A(Q),

where

A(Q) = ∂tQ + v · ∇xQ − ∆vQ + µ |∇vQ|2 − A(t, x, v) · ∇vQ.

By computation,

A(Q) = − a
|v − v0|2

2t3
+ 2b

〈v − v0, x − Xt〉
t3

− b
|v − v0|2

t2

− 3c
|x − Xt|2

2t4
+ c

〈x − Xt, v − v0〉
t3

− a
n

t

+ µ

∣∣∣∣a
(v − v0)

t
− b

(x − Xt)

t2

∣∣∣∣
2

− a
〈A, v − v0〉

t
+ b

〈A, x − Xt〉
t2

= B
(

v − v0

t
,

x − Xt

t2

)
− a

〈A, v − v0〉
t

+ b
〈A, x − Xt〉

t2
− a

n

t
,

where B is a quadratic form on Rn × Rn with matrix M ⊗ In,

M =




µ a2 − a

2
− b b +

c

2
− µ ab

b +
c

2
− µ ab µ b2 − 3c


 .

If a, b, c are given, then as µ → ∞,




tr M = µ (a2 + b2) + O(1),

det M = µ

[
5

2
ab2 + abc − b3 − 3a2c

]
+ O(1).

Both quantities are positive if b ≫ a and ac ≫ b2; then as µ → ∞ the
eigenvalues of M are of order µ b2 and ac/b ≫ b. So for any fixed C we
may choose a, b, c and µ so that

B
(

v − v0

t
,

x − Xt

t2

)
≥ C b

( |v − v0|2
t2

+
|x − Xt|2

t4

)
.

Combining this with the obvious bounds |〈A, (v − v0)/t〉| ≤ (A)2/2 +
|v−v0|2/(2t2) and |〈A, (x−Xt)/t

2〉| ≤ (A)2 + |x−Xt|2/(2t4), assuming
τ ≤ 1, we get in the end

A(Q) ≥ const.
b

t

[
C

( |v − v0|2
t

+
|x − Xt|2

t3

)
− 1

]
,

where C is arbitrarily large.
Recall that (x, v) /∈ Br; so
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- either |v−v0| ≥ r, and then A(Q) ≥ const. (b/t)[Cr2/τ−1], which
is positive if C > τ/r2;

- or |x − x0| ≥ r3, and then, for any τ ≤ r3/(4V ),

|x − Xt|2
t2

≥ |x − x0|2
2t2

− 2|v0|2 ≥
r6

2τ 2
− 2V 2 ≥ r6

4τ 2
;

so A(Q) ≥ const. (b/t)[Cr6/4τ 3 − 1], which is positive as soon as C >
4(τ/r2)3.

To summarize: under our assumptions there is a way to choose the
constants a, b, c, µ, depending only on n, A, r2/τ , satisfying c ≫ b ≫
a ≫ 1 and bc ≫ a2, so that Lϕ ≤ 0 in [0, τ) × (Bλr \ Br), as soon
as τ ≤ min(1, T, r3/(4V )). We now wish to enforce ϕ ≤ g for t = 0
and for (x, v) ∈ ∂(Bλr \Br); then the classical maximum principle will
imply g ≥ ϕ in [0, τ) × (Bλr \ Br).

The boundary condition at t = 0 is obvious since ϕ vanishes iden-
tically there (more rigorously, ϕ can be extended by continuity by 0 at
t = 0). The condition is also true on ∂Br since ϕ ≤ δ and g ≥ δ. It
remains to impose it on ∂Bλr . For that we estimate Q from below: as
soon as ac/b2 is large enough,

Q(t, x, v) ≥ a

4

( |v − v0|2
t

+
|x − Xt|2

t3

)
,

so for (x, v) ∈ ∂Bλr a computation similar to the one above yields

Q(t, x, v) ≥ a

4
min

(
λ2 r2

τ
,
λ6 r6

4 τ 3

)
≥ a λ2

16
min

(
r2

τ
,

(
r2

τ

)3
)

.

Thus if we choose

ε = δ exp

(
− µ a λ2

16
min

(
r2

τ
,

(
r2

τ

)3
))

,

we make sure that ϕ = δ e−µQ −ε ≤ 0 on ∂Bλr, a fortiori ϕ ≤ g on this
set, and then we can apply the maximum principle.

So now we have ϕ ≤ g, and this will yield a lower bound for g in
[τ/2, τ) × (B2r \ Br): indeed, if t ≥ τ/2 and (x, v) ∈ B2r \ Br then

Q(t, x, v) ≤ 2c

( |v − v0|2
t

+
|x − Xt|2

t3

)
≤ 64 c

(
r2

τ
+

r6

τ 3
+

V 2

τ

)

≤ 160 c max

(
r2

τ
,

(
r2

τ

)3
)

;
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so

ϕ(t, x, v) ≥ δ

[
exp

(
−160 µ c max

(
r2

τ
,

(
r2

τ

)3
))

− exp

(
− µ a λ2

16
min

(
r2

τ
,

(
r2

τ

)3
))]

.

For λ large enough the right-hand side is bounded below by K0 δ, where

K0 = exp

(
−160 µ c max

(
r2

τ
,
(

r2

τ

)3
))

/2; so g is bounded below by

K0 δ, and f ≥ (K0 exp(−τ B)) δ on [τ/2, τ)×(B2r\Br). This completes
the proof. �

A.23. Toolbox

The following elementary lemma is used in the proofs of Theo-
rems 18, 42 and 27.

Lemma A.22. Let δ > 0 and u0 > 0 be given. Then it is always
possible to choose positive numbers u1, u2, . . . , uN in such a way that

{
∀k ∈ {0, . . . , N − 1}, uk+1 ≤ δ uk;

∀k ∈ {1, . . . , N − 1}, u2
k ≤ δ uk−1 uk+1.

Proof. Without loss of generality, assume u0 = 1. Set m0 =
0, m1 = 1; by induction, it is possible to pick up positive numbers mk

such that

mk+1 ∈ (mk, 2mk − mk−1).

The resulting sequence will be increasing and satisfy mk > (mk−1 +
mk+1)/2. Next set uk = εmk ; for ε small enough, the desired inequalities
are satisfied. �

The next lemma is used in the proof of Theorem 52; it is a kind of
nonlinear analogue of Lemma A.22.

Lemma A.23. Let K, E, k > 0, J be given. Then there exist con-
stants ε1 = ε1(J) > 0, ℓ = ℓ(J, k) > 0 and K1 = K1(K, E, k, J) > 0
with the following property: For any ε ∈ (0, ε1) and E ∈ (0, E), there
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exist coefficients a1, . . . , aJ−1 > 0 satisfying

(A.23.1)





1 = a0 ≥ a1 ≥ a2 ≥ . . . ≥ aJ−1;

a1 ≤ KEε;

∀j ∈ {1, J − 1},
a2

j

aj−1
≤ K a1+ε

J−1 Ekε;

aJ−1 ≥ K1 Eℓε.

Proof of Lemma A.23. Without loss of generality we may as-
sume that K is bounded above by m := min(1, (E)−k); otherwise, just
replace K by m.

We shall choose the coefficients aj in such a way that the inequality
in the third line of (A.23.1) holds as an equality. For j = J − 1 this
gives

a2
J−1 = Ka1+ε

J−1aJ−2E
kε,

hence
aJ−2 = aJ−1 (KEkεaε

J−1)
−1.

Then the equality

aj

aJ−1

=

(
aj+1

aJ−1

)2 (
KEkεaε

J−1

)−1

yields, by decreasing induction,

aj = aJ−1 (KEkεaε
J−1)

−αj ,

where αj is defined by the (decreasing) recursion relation

αJ−2 = 1, αj−1 = 2αj + 1.

The sequence (aj)1≤j≤J−1 is nonincreasing if KEkεaJ−1 ≤ 1. From
the bound K ≤ min(1, (E)−k), we know that KEkε ≤ 1 as soon as
ε ≤ ε1 ≤ 1 (ε1 to be chosen later), and aJ−1 ≤ 1.

Then α1 = 2J−2 − 1 is a positive integer depending only on J , and

a1 = aJ−1 (KEkεaε
J−1)

−α1 = a1−α1ε
J−1 (KEkε)−α1 .

If ε ≤ ε1 := 1/(2α1), then aJ−1 appears in the right-hand side with a
positive exponent 1 − α1ε ∈ (1/2, 1). Also ε1 ≤ 1, as assumed before.

To make sure that the first condition in (A.23.1) is fulfilled, we
impose

a1−α1ε
J−1 (KEkε)−α1 = KEε,

that is

aJ−1 =
[
K1+α1E(1+kα1)ε

] 1
1−α1 ε.
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Up to decreasing K again, we may assume that the quantity inside
square brackets is bounded by 1; this also implies that aJ−1 ≤ 1, as
assumed before. Then, since 1/(1 − α1ε) ≤ 1/(1 − α1ε1) = 2, one has

aJ−1 ≥
[
K1+α1E(1+kα1)ε

]2
,

and the lemma follows upon choosing K1 = K2(1+α1), ℓ = 2(1 + kα1).
�

The next lemma, used to check (7.2) in Section 7, states that |∇2V |
defines a bounded operator H1(e−V ) → L2(e−V ) as soon as |∇2V | is
dominated by |∇V |.

Lemma A.24. Let V be a C2 function on Rn, satisfying (7.3).
Then, for all g ∈ H1(e−V ),

(i)

∫

Rn

|∇V |2 g2 e−V ≤ 8(1+
√

nC)2

(∫

Rn

g2 e−V +

∫

Rn

|∇g|2 e−V

)
;

(ii)

∫

Rn

|∇2V |2 g2 e−V ≤ 16C2(1+
√

2nC)2
(∫

Rn

g2 e−V +

∫

Rn

|∇g|2 e−V

)
.

Proof of Lemma A.24. By a density argument, we may assume
that g is smooth and decays fast enough at infinity. Then, by the
identity ∇(e−V ) = −(∇V )e−V and an integration by parts,

∫
|∇V |2g2 e−V = −

∫
g2∇V · ∇(e−V ) =

∫
∇ · (g2∇V ) e−V

=

∫
g2(∆V )e−V + 2

∫
g(∇g · ∇V ) e−V .

By Cauchy–Schwarz inequality,

(A.23.2)

∫
|∇V |2g2 e−V ≤

√∫
g2(∆V )2 e−V

√∫
g2 e−V

+ 2

√∫
|∇V |2g2 e−V

√∫
|∇g|2 e−V .

Since, by (7.5),

(∆V )2 ≤ n|∇2V |2 ≤ nC2(1 + |∇V |)2 ≤ 2nC2(1 + |∇V |2),
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it follows from (A.23.2) that

∫
|∇V |2g2 e−V ≤

√
2nC

√∫
g2 e−V +

∫
|∇V |2g2 e−V

√∫
g2 e−V

+ 2

√∫
|∇V |2g2 e−V

√∫
|∇g|2 e−V

≤
√

2nC

∫
g2 e−V +

√
2nC

√∫
|∇V |2g2 e−V

√∫
g2 e−V

+ 2

√∫
|∇V |2g2 e−V

√∫
|∇g|2 e−V .

Thanks to Young’s inequality, this can be bounded by

√
2nC

∫
g2 e−V +

(
1

4

∫
|∇V |2g2 e−V + 2nC2

∫
g2 e−V

)

+

(
1

4

∫
|∇V |2g2 e−V + 4

∫
|∇g|2 e−V

)
.

All in all,
∫

|∇V |2g2 e−V ≤ 1

2

∫
|∇V |2g2 e−V + (

√
2nC + 2nC2)

∫
g2 e−V

+ 4

∫
|∇g|2 e−V ,

so
(A.23.3)∫

|∇V |2g2 e−V ≤ 2(
√

2nC + 2nC2)

∫
g2 e−V + 8

∫
|∇g|2 e−V ,

This easily leads to statement (i) after crude upper bounds.
To prove statement (ii), start again from (A.23.3) and apply (7.3)

again, in the form |∇2V |2 ≤ 2C(1 + |∇V |2): the desired conclusion
follows at once. �

Next, we shall study an interpolation inequality “in Nash style”.
First recall the classical Nash inequality [44] in Rn

x: If f is a nonnegative
function of x ∈ Rn, then

(A.23.4)

∫

Rn

f 2 dx ≤ C(n)

(∫

Rn

|∇xf |2 dx

)1−θ (∫

Rn

f dx

)2θ

,
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where

θ =
2

n + 2
.

It is easy to generalize this inequality to higher orders, or fractional
derivatives: If D = (−∆)1/2, and 0 ≤ λ < λ′, then

∫

Rn

|Dλ
xf |2 dx ≤ C(n, λ, λ′)

(∫

Rn

|Dλ′

x f |2 dx

)1−θ (∫

Rn

f dx

)2θ

,

where now

θ =
2(λ′ − λ)

n + 2λ′
.

The next lemma generalizes this to functions which depend on two
variables, x and v, and allows different orders of derivations in these
variables. The symbol D will again stand for (−∆)1/2.

Lemma A.25. Let f = f(x, v) be a nonnegative (smooth, rapidly
decaying) function on Rn

x × Rn
v . Let λ, λ′, µ, µ′ be four nonnegative

numbers with λ′, µ′ > 0. If

λ

λ′
+

µ

µ′
< 1,

then there is a constant C = C(n, λ, µ, λ′, µ′) such that

(A.23.5)

∫
|Dλ

xDµ
v f |2 dx dv

≤ C

(∫
|Dλ′

x f |2 dx dv +

∫
|Dµ′

v f |2 dx dv

)1−θ (∫
f

)2θ

,

where

θ =
1 −

(
λ
λ′ + µ

µ′

)

1 + n
2

(
1
λ′ + 1

µ′

) .

Proof of Lemma A.25. The strategy here will be the same as
in the classical proof (actually due to Stein) of Nash’s inequality: Go
to Fourier space and separate according to high and low frequencies,

then optimize. I shall denote by f̂ the Fourier transform of f , by ξ the
Fourier variable that is dual to x, and by η the variable that is dual to
v. So the inequality to prove is

(A.23.6)

∫
|ξ|2λ|η|2µ|f̂ |2 dξ dη

≤ C

(∫
|ξ|2λ′|f̂ |2 dξ dη +

∫
|η|2µ′|f̂ |2 dξ dη

)1−θ

‖f̂‖2θ
L∞.
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First start with the case λ = 0, and separate the integral in the
left-hand side of (A.23.6) into three parts:

∫
(. . .) dξ dη =

∫

|ξ|≤R, |η|≤S

(. . .) dξ dη +

∫

|ξ|>R, |η|≤S

(. . .) dξ dη

+

∫

|ξ|>R, |η|>S

(. . .) dξ dη,

where R and S are positive numbers that will be chosen later on.
Then,

∫

|ξ|≤R, |η|≤S

|η|2µ|f̂(ξ, η)|2 dη dξ ≤ S2µ vol(|ξ| ≤ R) vol(|η| ≤ S) ‖f̂‖2
L∞

≤ CnRnS2µ+n‖f̂‖2
L∞,(A.23.7)

where Cn only depends on n, and vol is a notation for the Lebesgue
volume in Rn.

Next
(A.23.8)∫

|ξ|>R, |η|≤S

|η|2µ|f̂(ξ, η)|2 dξ dη ≤ S2µ

R2λ′

∫
|ξ|2λ′|f̂(ξ, η)|2 dξ dη.

Finally,
(A.23.9)∫

|ξ|>R, |η|>S

|η|2µ|f̂(ξ, η)|2 dξ dη ≤ 1

S2(µ′−µ)

∫
|η|2µ′ |f̂(ξ, η)|2 dξ dη.

Choose R and S such that S2µ/R2λ′
= 1/S2(µ′−µ), i.e. R = Sµ′/λ′

.
This yields a bound like

CnS
2µ+n

“
1+ µ′

λ′

”

‖f̂‖2
L∞ + S2(µ−µ′)

(∫
|ξ|2λ′|f̂ |2 +

∫
|η|2µ′|f̂ |2

)
.

Then the result follows by optimization in S.

By symmetry, the same argument works for the case when µ = 0.
Now for the general case, we first choose p and q such that p−1 + q−1 =
1 and p−1 ≥ λ/λ′, q−1 ≥ µ/µ′, and apply Hölder’s inequality with
conjugate exponents p and q:
(A.23.10)
∫

|ξ|2λ|η|2µ|f̂ |2 dξ dη ≤
(∫

|ξ|2λp|f̂ |2 dξ dη

) 1
p
(∫

|η|2µq|f̂ |2 dξ dη

)1
q

.
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Then we apply to the integrals in the right-hand side of (A.23.10) the
results obtained before for λ = 0 and µ = 0:

∫
|ξ|2λp|f̂ |2 ≤ C

(∫
|ξ|2λ′|f̂ |2 +

∫
|η|2µ′ |f̂ |2

)1−θ1

‖f̂‖2θ1
L∞,

and
∫

|η|2µq|f̂ |2 ≤ C

(∫
|ξ|2λ′|f̂ |2 +

∫
|η|2µ′ |f̂ |2

)1−θ2

‖f̂‖2θ2
L∞,

where

θ1 =
λ′ − λp

λ + n
2

(
1 + λ′

µ′

) , θ2 =
µ′ − µq

µ + n
2

(
1 + µ′

λ′

) .

After some calculation, one finds

θ1

p
+

θ2

q
=

1 −
(

λ
λ′ + µ

µ′

)

1 + n
2

(
1
λ′ + 1

µ′

) ,

and the result follows. �

The next technical lemma in this Appendix is an estimate about
a system of differential inequalities. The system may look rather pe-
culiar, but I believe that it arises naturally in many problems of hy-
poelliptic regularization. In any case, it is used in various places of
Appendix A.21.

Lemma A.26. Let E , X, Y , Z and M be continuous functions of
t ∈ [0, 1], with E , X, Y, Z ≥ 0, such that

(A.23.11) K(X + Y ) ≤ E ≤ C(X + Y ),

(A.23.12) |M| ≤ CE1−δ,

(A.23.13)
dE
dt

≤ −KZ + CE ,

(A.23.14) Y ≤ C(X + Z)1−θ,

(A.23.15)
dM
dt

≤ −KX + C(Y + Z),

where C, K are positive constants, and δ, θ are real numbers lying in
(0, 1). Then

E(t) ≤ C

t1/κ
, κ = min

(
δ,

θ

1 − θ

)
,

where C is an explicit constant which only depends on C, K, θ, δ.
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Proof of Lemma A.26. Let Ẽ(t) = e−CtE(t); then Ẽ satisfies es-

timates similar to E , except that equation (A.23.13) becomes dẼ/dt ≤
−KZ. In the sequel I shall keep the notation E for Ẽ , so this just
amounts to replacing (A.23.13) by

(A.23.16)
dE
dt

≤ −KZ.

In particular, E is nonincreasing.
Now let E > 0, and let I ⊂ [0, 1] be the time-interval where (E/2) ≤

E(t) ≤ E. The goal is to show that the length |I| of I is bounded like
O(E−κ) for some κ > 0. If that is the case, then the conclusion follows.
Indeed, let E0 > 0 be given, and let T be the first time t such that
E(t) ≤ E0, then

T ≤ C ′
∑

n≥1

E−nκ
0 ≤ C ′′E−κ

0 ;

so E0 ≤ T−1/κ. (Here as in the sequel, C, C ′, C ′′ stand for various
constants that only depend on the constants C and K appearing in
the statement of the lemma.)

If E ≤ 1 then the conclusion obviously holds true. So we might
assume that E ≥ 1.

It follows by integration of (A.23.16) over I that

(A.23.17)

∫

I

Z(t) dt ≤ E − E

2
=

E

2
.

By integrating (A.23.14), we find
∫

I

Y (t) dt ≤ C

∫

I

[
X(t) + Z(t)

]1−θ
dt

≤ C ′

(∫

I

X(t)1−θ dt +

∫

I

Z(t)1−θ dt

)

≤ C ′

(
|I|
[
sup

I
X(t)1−θ

]
+

(∫

I

Z(t) dt

)1−θ

|I|θ
)

.

To estimate the first term inside parentheses, note that X ≤ CE ≤ CE;
to bound the second term, use (A.23.17). The result is

(A.23.18)

∫

I

Y (t) dt ≤ C
(
|I|E1−θ + E1−θ|I|θ

)
≤ C ′|I|θE1−θ,

where the last inequality follows from |I| ≤ |I|θ. (Note indeed that
|I| ≤ 1 and θ < 1.)
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Next, integrate inequality (A.23.15) over I = [t1, t2], to get

K

∫

I

X(t) dt ≤ |M(t1)| + |M(t2)| + C

∫

I

[Y (t) + Z(t)] dt

(A.23.19)

≤ 2 sup
t∈I

|M(t)| + C

(∫

I

Y (t) dt +

∫

I

Z(t) dt

)
.(A.23.20)

Also, since E ≥ E/2 on I, we have

(A.23.21)
|I|E

2
≤
∫

I

E(t) dt ≤ C

(∫

I

X(t) dt +

∫

I

Y (t) dt

)
,

where the last inequality follows from (A.23.11).
The combination of (A.23.20) and (A.23.21) implies

|I|E
2

≤ C
(
sup
t∈I

|M(t)| +
∫

I

Y (t) dt +

∫

I

Z(t) dt
)
.

To estimate the first term inside the brackets, use (A.23.14); to estimate
the second one, use (A.23.18); to estimate the third one, use (A.23.17).
The result is

(A.23.22) |I|E ≤ C(E1−δ + |I|θE1−θ + E).

Now we can conclude, separating three cases according to which
one of the three terms in the right-hand side of (A.23.22) is largest:

- If it is E1−δ, then |I|E ≤ 3CE1−δ, so |I| ≤ 3CE−δ;

- If it is |I|θE1−θ, then |I|E ≤ 3C|I|θE1−θ, so |I| ≤ (3C)
1

1−θ E− θ
1−θ ;

- If it is E, then |I| ≤ 3C.

In any case, there is an estimate like |I| ≤ CE−κ, where κ is as in
the statement of the lemma. So the proof is complete. �

The final result in this appendix is a variation of the usual Korn
inequality, used in Subsection 18.5.

Proposition A.27 (trace Korn inequality). Let Ω be a smooth
bounded connected open subset of RN . Then there is a constant C =
C(Ω) such that for any vector field u ∈ H1(Ω; RN), tangent to the
boundary ∂Ω,

(A.23.23) ‖∇u‖2
L2(Ω) ≤ C

(
‖∇symu‖L2(Ω) + ‖u‖L2(∂Ω)

)
,

where ∇symu stands for the symmetric part of the matrix-valued field
∇u.
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Proof. By density, we may assume that u is smooth. According
to [15, eq. (39)-(42)], if u is tangent to the boundary, then

∫

Ω

|∇symu|2 =

∫

Ω

|∇au|2 +

∫

Ω

(∇ · u)2 −
∫

∂Ω

(II)Ω(u, u),

where ∇au stands for the antisymmetric part of ∇u, and (II)Ω for the
second fundamental form of the domain Ω. It follows that∫

Ω

|∇au|2 ≤
∫

Ω

|∇symu|2 + C

∫

∂Ω

|u|2,

where C = max∂Ω ‖(II)Ω‖. Inequality (A.23.23) follows immediately.
�
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