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ABSTRACT. This course was taught in the summer of 2010 in
the Centre International des Rencontres Mathématiques as part
of a program on mathematical plasma physics related to the ITER
project; it constitutes an introduction to the Landau damping phe-
nomenon in the linearized and perturbative nonlinear regimes, fol-
lowing the recent work [78] by Mouhot & Villani.






Foreword

In 1936, Lev Landau devised the basic collisional kinetic model
for plasma physics, now commonly called the Landau—Fokker—Planck
equation. With this model he was introducing the notion of relaxation
in plasma physics: relaxation a la Boltzmann, by increase of entropy,
or equivalently loss of information.

In 1946, Landau came back to this field with an astonishing concept:
relaxation without entropy increase, with preservation of information.
The revolutionary idea that conservative phenomena may exhibit ir-
reversible features has been extremely influential, and later led to the
concept of violent relaxation.

This idea has also been controversial and intriguing, triggering hun-
dreds of papers and many discussions. The basic model used by Landau
was the linearized Vlasov—Poisson equation, which is only a formal ap-
proximation of the Vlasov—Poisson equation. In the present notes I
shall present the recent work by Clément Mouhot and myself, extend-
ing Landau’s results to the nonlinear Vlasov-Poisson equation in the
perturbative regime. Although this extension is still far from handling
the mysterious fully nonlinear regime, it already turned out to be rich
and tricky, from both the mathematical and the physical points of view.

These notes start with basic reminders about classical particle sys-
tems and Vlasov equations, assuming no prerequisite from modeling
nor physics. Standard notation is used throughout the text, except
maybe for the Fourier transforms: if h = h(z,v) is a function on the
position-velocity phase space, then 1 stands for the Fourier transform
in the z variable only, while h stands for the Fourier transform in both
x and v variables. Precise conventions will be given later on.

A preliminary version of this course was taught in the summer of
2010 in Cotonou, Benin, on the invitation of Wilfrid Gangbo; it is
a pleasure to thank the audience for their interest and enthusiasm.
The first version of the notes was mostly typed during the nights of a
meeting on wave turbulence organized by Christophe Josserand, in the
welcoming library of the gorgeous Domaine des Treilles of the Fonda-
tion Schlumberger. Then the notes were polished as I was teaching the
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8 FOREWORD

course, on the invitation of Eric Sonnendriicker, as part of the Cem-
racs 2010 program on plasma physics and mathematics of ITER, in the
Centre International des Rencontres Mathématiques (CIRM), Luminy,
near Marseille, France. I hope this text has retained a bit of the magical
atmosphere of work and play which was in the air during that summer
in Provence. The notes were later repolished and slightly increased on
the occasion of a course in Université Claude Bernard (Lyon, France)
in 2011, and after the constructive criticisms of an anonymous referee.

This foreword is also an opportunity to honor the memory of Naoufel
Ben Abdallah, who tragically passed away, only days before the course
in CIRM was held. Naoufel was a talented researcher, an energetic
colleague, a reliable leader as well as a lively fellow. I cherish the mem-
ory of an astonishing hike which we did together, also with his wife
Najla and our common friend Jean Dolbeault, in the Haleakala crater
on Hawai‘i, back in 1998. These memories of good times will not fade,
and neither will the beauty of Naoufel’s contribution to science.



CHAPTER 1

Mean field approximation

The two main classes of kinetic equations are the collisional equa-
tions of Boltzmann type, modeling short-range interactions, and the
mean field equations of Vlasov type, modeling long-range interactions.
The distinction between short-range and long-range does not refer to
the decay of the microscopic interaction, but to the fact that the rele-
vant interaction takes place at distances which are much smaller than,
or comparable to, the macroscopic scale; in fact both types of interac-
tion may occur simultaneously. Collisional equations are discussed in
my survey [104]. In this chapter I will concisely present the archetypal
mean field equations.

1.1. The Newton equations

The collective interaction of a large population of “particles” arises
in a number of physical situations. The basic model consists in the
system of Newton equations in R? (typically d = 3):

(1.1) m; @(t) = ZFjHi(t),

where m; is the mass of particle i, z;(t) € R? its position at time ¢, 7;(t)
its acceleration, and Fj_,; is the force exerted by particle j on particle
1. Even if this model does not take into account quantum or relativistic
effects, huge theoretical and practical problems remain dependent on
its understanding.

The masses in (1.1) may differ by many orders of magnitude; actu-
ally this disparity of masses plays a key role in the study of the solar
system, or the Kolmogorov—Arnold-Moser theory [28], among other
things. But it also often happens that the situation where all masses
m; are equal is relevant, at least qualitatively. In the sequel, I shall
only consider this situation, so m; = m for all 7.

If the interaction is translation invariant, it is often the case that
the force derives from an interaction potential; that is, there is W :
R? — R such that

F=-VW(z—y)
9



10 1. MEAN FIELD APPROXIMATION

is the force exterted at position x by a particle located at position y.
This formalism misses important classes of interaction such as magnetic
forces, but it will be sufficient for our purposes.

ExAMPLES 1.1. (a) W(x—y) = const. p p'/|x—y| is the electrostatic
interaction potential between particles with respective electric charges
p and p/, where |z —y| is the Euclidean distance in R?; (b) W(x —y) =
—const. mm'/|z — y| is the gravitational interaction potential between
particles with respective masses m and m’, also in R3; (¢) Essentially
any potential I arises in some physical problem or the other, and even
a smooth (or analytic!) interaction potential W leads to relevant and
difficult problems.

As an example, let us write the basic equation governing the posi-
tions of stars in a galaxy:

. Ty — &
ii(t) =G ij o
JFi
where G is the gravitational constant. Note that in this example, a star
is considered as a “particle”! There are similar equations describing
the behavior of ions and electrons in a plasma, involving the dielectric
constant, mass and electric charges.

In the sequel, I will assume that all masses are equal and work in
adimensional units, so masses will not explicitly appear in the equa-
tions.

But now there are as many equations as there are particles, and
this means a lot. A galaxy may be made of N ~ 10'? stars, a plasma
of N ~ 10? particles... thus the equations are untractable in practice.
Computer simulations, available on Internet, give a flavor of the rich
and complex behavior displayed by large particle systems interacting
through gravity. It is very difficult to say anything intelligent in front
of these complex pictures!

This complex behavior is partly due to the fact that the gravita-
tional potential is attractive and singular at the origin. But even for a
smooth interaction W the large value of N would cause much trouble
in the quantitative analysis. The mean field limit will lead to another
model, more amenable to mathematical treatment.

1.2. Mean field limit

The limit N — oo allows to replace a very large number of simple
equations by just one complicated equation. Although we are trading
reassuring ordinary differential equations for dreaded partial differen-
tial equations, the result will be more tractable.
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From the theoretical point of view, the mean field approximation is
fundamental: not only because it establishes the basic limit equation,
but also because it shows that the qualitative behavior of the system
does not depend much on the exact value of the number of particles,
and then, in numerical simulations for instance, we can replace trillions
of particles by, say, millions or even thousands.

It is not a priori obvious how one can let the dimension of the phase
space go to infinity. As a first step, let us double variables to convert
the second-order Newton equations into a first-order system. So for
each position variable x; we introduce the velocity variable v; = 2;
(time-derivative of the position), so that the whole state of the system
at time ¢ is described by (x1,v1), ..., (xx,vy). Let us write X< for the
d-dimensional space of positions, which may be R, or a subset of R,
or the d-dimensional torus T? if we are considering periodic data; then
the space of velocities will be R,

Since all particles are identical, we do not really care about the state
of each particle individually: it is sufficient to know the state of the
system up to permutation of particles. In slightly pedantic terms, we are
taking the quotient of the phase space (X% x RY)Y by the permutation
group Sy, thus obtaining a cloud of undistinguishable points.

There is a one-to-one correspondence between such a cloud C =
{(z1,v1),...,(xn,vn)} and the associated empirical measure

1 N
~N
- X 6x-v~7
’LL N;('mz)

where d(, . is the Dirac mass in phase space at (z,v). From the physical
point of view, the empirical measure counts particles in phase space.

Now the empirical measure ¥ belongs to the space P(X? x R9),
the space of probability measures on the single-particle phase space.
This space is infinite-dimensional, but it is independent of the number
of particles. So the plan is to re-express the Newton equations in terms
of the empirical measure, and then pass to the limit as N — oo.

For simplicity I shall assume that X¢ is either R? or T¢, and that
the force derives from an interaction potential W. The following propo-
sition establishes the link between the Newton equations and the em-
pirical measure equation. Its formulation dispends me from discussing
the well-posedness of the Newton equations, which might be tricky if
W is not smooth enough (Cauchy—Lipschitz theory would require W
to have a locally bounded Hessian) or behaves wildly at infinity (such
as W(x) = —z* in R).
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PROPOSITION 1.2. (i) Let W € CY(X%R), and for each i let x; =
z;(t), 0 < t < T. Then with the notation N = N7'3" 0y, 4, the
following two statements are equivalent:

(1.2) i, :—CZVW T — ;)

o™ y -
(1.3) W—H) Vi + FN(t,x) - Vi =0,

where
FN(t,z) = —CZVW x— ;) = —cN (VW s, V).
J
(ii) If VW is uniformly continuous and [y converges weakly as
N — oo to some measure 19 and ¢ = c¢(N) satisfies cN — v > 0

as N — oo, then up to extraction of a subsequence, ﬁN converges as
t — oo to a time-dependent measure p = p(dx dv) solving the system

o
b Vap+ F(t,x) - Vo =0
(1.4) 5 pt Ft,x) - Vo

F=—yVW:x,p

REMARK 1.3. Equations (1.3) and (1.4) are to be understood in
distributional sense, that is, after integrating on the phase space against
a nice test function p(x,v), say smooth and compactly supported. To
rewrite these equations in distributional form, note that

v Vo =V - (vp), F(t,x)~Vvu:Vv-(F(t,x)u).

(To be rigorous one should also use a test function in time, but this is
not a serious issue and I shall leave it aside.)

REMARK 1.4. The second formula in (1.4) can be made more ex-
plicit as

_ / W (x — y) ur(dy duw).

Of course the convolution in the velocity variable is trivial since VW
does not depend on it; so this is just an integration in velocity space.

REMARK 1.5. By definition, a sequence of measures ;v converges to
a measure p in the weak sense if, for any bounded continuous function

(e, v),
// o(x,v) " (dz dv) —— o // x,v) p(dz dv).
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If 4V and p are probability measures, then weak convergence is equiv-
alent to convergence in the sense of distributions.

SKETCH OF PROOF OF PROPOSITION 1.2. Let us forget about is-
sues of regularity and well-posedness, and focus on the core compu-
tations, assuming that z;(¢) is a smooth function of t. When we test
equation (1.3) against an arbitrary function ¢ = ¢(z,v) we obtain

dl1 1 1
% [N Z gO(.Ti, vl)] _N Z (U : Vx@)‘(xi,vi)_ﬁ Z (FN ) vv(’p)}(Ii,Ui) -

7 K3

where the time-dependence is implicit; by chain-rule this means
1 . )
N Z(szo &+ Vo 0 — Ve v, = Vyp ! FN(*’”)) =0,

where ¢ inside the summation is evaluated at (z;,v;). Since v; = 2,
this equation reduces to

(1.5) %Z [0 — FN(t,2;)] - Voo(zi,v;) = 0.

Now this should hold true for any test function ¢(x, v). To fix ideas,
assume that all (z;,v;) are distinct. Choosing one which takes the form
e -v near (x;,v;) (with e an arbitrary vector) and which vanishes near
(zj,v;) for all j # i, we deduce that ©v; = FN(¢,z;). The case when
some particles occupy the same position in phase space is left as an
exercise. (In fact if, say, two particles occupy the same state at some
time, then it will be the same for all times, and we can replace them
by one single particle.)

(This argument is not fully rigorous since it may happen that two
distinct particles occupy similar positions in phase space, but that is
not a big deal to fix.) Now (1.5) is just a way to rewrite (1.2); the
equivalence between (1.2) and (1.3) follows easily.

Next we note that Y VW (z — x;) = NVW % i, where the convo-
lution is in both variables  and v. In retrospect, it is normal that the
force should be expressed in terms of the empirical measure, since this
is a symmetric expression of the positions of particles.

Now let us consider the limit N — oo. Let us fix a finite time-
horizon 7" > 0 and work on the time-interval [-7',T]. By assumption
the initial data i (0,-) form a tight family; then from the differential
equation satisfied by the measures 1™ (¢, - ) it is not difficult to show
that 2™ (¢, - ) is also tight, uniformly in ¢ € [T, T]. Then, up to extrac-
tion of a subsequence, 7™ (¢, -) will converge in C'([=T,T]; D'(X? x R?))
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for any 7" > 0, to some limit measure u(t,dz dv). It only remains to
pass to the limit in the equation.

Being the convolution of a uniformly continuous function with a
probability measure, the force field F¥ = —cN VW * iV is uniformly
continuous on [T, 7] x X% and will converge uniformly as N — oo
to —yVW % p. This easily implies that

in distributional sense, whence V,, - (FY iV) — V,, - (F u). Similarly,
V. - (viY) converges to V, - (vu), and the proof is complete. O

The limit equation (1.4) is called the nonlinear Vlasov equation
associated with the interaction potential W. It makes sense just as
well for gy (dazdv) = N713" 0(4, )0,y (in which case it reduces to the
Newton dynamics) as for p,(dz dv) = f(t,z,v) dx dv, that is, for a con-
tinuous distribution of matter. In fact the nonlinear Vlasov equation
is the completion, in the space of measures, of the system of Newton
equations.

It is customary and physically relevant to restrict to the case of a
continuous distribution function, and then focus on the equation satis-
fied by f(t,x,v). Since the Lebesgue measure dz dv is transparent to
the differential operators V, and V,, one easily obtains the nonlinear
Vlasov equation for the density function f = f(¢,z,v):

of

E%—U-wa—i-F(t,x)-va:O

(1.6)
F=-VW %, p, p(t,x) = /f(t,x,v) dv,
where the (z, v)-convolution has been explicitly replaced by a convolu-
tion in  and an integration in v.

Equation (1.6) is the single most important partial differential equa-
tions of mean field systems, and will be the object of study of this
course.

1.3. Precised results

In Proposition 1.2 it was assumed that W is continuously differen-
tiable. If W is smoother then one can prove more precise results of
quantitative convergence, involving distances on probability measures,
for instance the Wasserstein distances W,,. For the present section, it
will be sufficient to know the 1-Wasserstein distance, defined by the
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formula
Wiy, v) = sup {/wdu—/wv; H¢||Lipél},

where the supremum is over all 1-Lipschitz functions ¢ of (z,v), and
it is assumed that p and v possess a finite moment of order 1. (If one
imposes that 1) is also bounded in supremum norm, one obtains the
closely related “bounded Lipschitz” distance, which does not need any
moment assumption.)

Here is a typical estimate of convergence for the mean-field limit,
stated here without proof, going back to Dobrushin:

PROPOSITION 1.6. If py(dz dv) and vi(dxdv) are two solutions of
the nonlinear Vlasov equation with interaction potential W, then for
any t € R

(L) Wi, vy) < 1MW (o, 1), C = max (|| V*W||=, 1).

It might not be obvious why this provides a convergence estimate
in the mean-field limit. To see this, choose p,(dz dv) = f(t,z,v) dx dv
and v; = 11Y; then (1.7) controls at time ¢ the distance between the
limit mean-field behavior and the Newton equation for IV particles, in
terms of how small this distance is at initial time ¢ = 0. If the particles
at ¢ = 0 are chosen randomly, then typically the 1, distance at t = 0
is O(1/V/N), so Wi, vi) = O(e*“!/5/N), which solves the problem.
(Note that this estimate requires crazy amounts of particles to get a
good precision in large time.)

Another type of estimates are large deviation bounds:

PROPOSITION 1.7. If V2W is bounded, fo = fo(x,v) is given with
[ fo(z,v) PU=*+) do dv < Gy, (2;(0), 4:(0)), 1 < i < N, are chosen
randomly and independently according to fo(x,v)dxdv, (z;(t)) solve
the Newton equations (1.2) with ¢ = 1/N, and f(t,z,v) solves the
nonlinear Vlasov equation (1.6), then there are K > 0 and Ny > 0
such that for any T > 0 there is C = C(T') such that

(1.8) N > Ny max(e "9 1) —

P { sup W, </7iv> f(t,z,v)dz dv) >e|l <C (1 + 6*2) efKNE?7

0<t<T

where P stands for probability.

Many refinements are possible: for instance, one can estimate the
density error between f (¢, x,v) and the empirical measure, after smooth-
ing by a peaked convolution kernel; study the evolution of (de)correlations
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between particles which are initially randomly distributed; show that
trajectories of particles in the system of size N are well approximated
by trajectories of particles evolving in the limit mean-field force, etc.

1.4. Singular potentials

Fine. But eventually, more often than not, the interaction potential
is not smooth at all, instead it is rather singular. Then nobody has a
clue of why the mean-field limit should be true. The problem might be
just technical, but on the contrary it seems very deep.

Such is the case in particular for the most important nonlinear
Vlasov equations, namely the Vlasov—Poisson equations, where W
is the fundamental solution of +A. In dimension d = 3, writing r =
|z — y|, we have

1
e the Coulomb interaction (repulsive) W = s
r
1
e the Newton interaction (attractive) W = -
r

Then the equation F' = —VW % p becomes F' = £=VA~1p.

It is remarkable that, up to a change of sign in the interaction, the
very same equation describes systems of such various scales as a plasma
and a galaxy, in which each star counts as one particle! In fact to be
more precise, we should slightly change the equation for plasmas, by
taking into account the contribution of heavy ions, which is usually
considered in the form of a fixed density of positive charges, say p;(z),
and by considering magnetic effects, which in some situations play an
important role. Things become much more messy when irreversible
phenomena are taken into account, but these phenomena occur only as
corrections to the mean-field limit, due to the fact that N is finite.

While the mean-field limit for smooth potential has been well-
understood for more than three decades, in the case of singular po-
tentials the only available results are those obtained a few years ago
by Hauray and Jabin: they assume that (a) the interaction is not too
singular: essentially |VW| = O(r~*) with 0 < s < 1 (independently of
the dimension d); and (b) particles are well-separated in phase space
initially, so

c
(1.9) ;&E(‘xi_:ﬂj|+|vi_’l}j|) > N
where ¢ is of course independent of N.

Both conditions are not so satisfactory: assumption (a) misses the
Coulomb/Newton singularity by an order 17, while assumption (b) can-
not be true in the simplest case when particles are chosen randomly and
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independently of each other. It might be that assumption (b) can be
given a physical justification, though, based on the ionization process
for instance; but that remains to be done. For numerical purpose, as-
sumption (b) is not so disturbing since we can choose the discretization
as we wish.

In any case, a key ingredient in the proof of the Hauray—Jabin
theorem consists in showing that the separation property (1.9) is prop-
agated in time: if true at ¢t = 0, it remains true for later times, up
to a deterioration of constants. This implies that the proportion of
particles located in a box of side ¢ in phase space remains bounded like
O(e??) as time goes by, uniformly in N. (This is a discrete analogue
of the property of propagation of L*° bounds for the nonlinear Vlasov
equation, which will be examined in the next chapter.)

What about the theory of the nonlinear Vlasov equation? Is the
system well-posed for a given initial datum? For smooth interactions
this does not pose any problem, but when the interaction potential is
singular, this becomes highly nontrivial. Most efforts have been focused
on the Poisson coupling in dimension 3. There are two famous theories
for the Vlasov-Poisson equation with large data:

e The Pfaffelmoser theory, developed and simplified in particular
by Batt, Rein, Glassey, Scheffer, construct smooth solutions for the
Vlasov—Poisson equation in dimension 3, assuming essentially that f;
is C!' and compactly supported in (x,v). Such an assumption of com-
pact support is a heresy in the context of kinetic theory, since the most
important distribution, namely the Maxwellian (Gaussian) function, is
of course positive everywhere. I emphasize that this restrictive assump-
tion was relaxed by Horst, in a little-known but important contribution.

e The Lions—Perthame theory constructs a unique solution for an
initial datum f; on R3 x R3 which satisfies, say,

C
(14 |2 + [o])**

(1.10) |[filz, v)| + [V f(z,0)] <

(The exponent 10 depends on the fact that dimension is 3, and anyway
should not be taken seriously.) Besides velocity averaging phenomena,
the key insight of the analysis is the propagation of bounds on velocity
moments of order greater than 3. Then one can show that the spatial
density is uniformly bounded, and the smoothness is propagated too.
This elegant theory takes advantage of the dispersion at large positions
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to control velocity-moments, so it is difficult to adapt to bounded ge-
ometries, such as the torus T?; this seems to be a major limitation.

In higher dimension, one expects in general blow-up for the Poisson
coupling, at least gravitational; this has been proved in dimension 4
for gravitational interaction if the energy is negative. A discussion for
more general singularities and dimensions is still far from sight.
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Blow up in dimension 4 is easy to prove thanks to the virial identity;
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CHAPTER 2

Qualitative behavior of the Vlasov equation

In the previous chapter we were interested in the derivation and
well-posedness of the Vlasov equation
af

E%—U-wa—i-F(t,x)-va:O

F=-VWsx,p pltz)= /f(t,x,v) dv.

But now the emphasis will be different: starting from the Vlasov equa-
tion, we shall enquire about its qualitative behavior. This problem fills
up textbooks in physics, and has been the subject of an enormous
amount of literature.

(2.1)

2.1. Boundary conditions

There is a zoology of boundary conditions for the Vlasov equation.
To avoid discussing them, I shall continue to assume that the position
space is either X? = R? the whole space, or X? = T¢/Z% the d-
dimensional torus. The latter case deserves some comments.

If W is a given potential in R?, then in the periodic setting, formally
W should be replaced by its periodic version WPe:

WP (z) = > W — k).
kezd

If W decays fast enough, this is well-defined, but if W has slow decay,
like in the case of Poisson interaction, this will not converge! Then
the justification requires some argument. In fact, it is clear that for
Poisson coupling the potential cannot converge: in the case of the
Poisson coupling, the total potential W x p should formally be equal to
+A~!p, which does not make sense since p does not have zero mean...

To get around this problem, we would like to take out the mean of
p. In the plasma case, one can justify this by going back to the model:
indeed, one may argue that the density of ions should be taken into
account, that it can be modelled as a uniform background because ions
are much heavier and move on longer time scales than electrons, and
that the density of ion charges should be equal to the mean density of

21



22 2. QUALITATIVE BEHAVIOR OF THE VLASOV EQUATION

electrons because the plasma should be globally neutral. This amounts
to replace the potential W x p by W« (p — (p)), where (p) = [ pdz.

The preceding reasoning is based on the existence of two different
species of particles. But even if there is just one species of particles, as
is the case for gravitational interaction, it is still possible to argue that
the mean should be removed. Indeed, in (2.1) W only appears through
its gradient, and, whenever c is a constant,

VW (p—c)=VWxp—VWsxc=VWxp.

Thus, if W decays fast enough at infinity and p is periodic,

R4 T4
VW % p= VWP % p=VWP"x (p— (p)).

(I have used the same symbol p for a periodic function on R? and for
the function which it induces on T¢.) If W does not decay fast enough
at infinity, then at least we can write W = lim. o W., where W, is
an approximation decaying fast at infinity (say +e~"/¢/(4nr)), then
VW, % p = VWP % (p — (p)), which in the limit ¢ — 0 converges to
VWP s (p — (p)). Of course this might not be so convincing in the
absence of a clear discussion of the meaning of the parameter e, but
at least makes sense in some regime and allows to take out the mean
(p) from the density in (2.1). This operation is similar to the so-called
Jeans swindle in astrophysics.

Having warned the reader that there is a subtle point here, from now
on in the periodic setting I shall always write VW xp for VIV« (p—(p)).
As a final comment, one may argue against the relevance of periodic
boundary conditions, especially in view of the above discussion; but this
is still by far the simplest way to have access to a confined geometry,
avoiding effects such as dispersion at infinity which completely change
the qualitative behavior of the nonlinear Vlasov equation.

2.2. Structure

The nonlinear Vlasov equation is a transport equation, and can
therefore be solved by the well-known method of characteristics: if
f solves the equation, then the measure f(¢,z,v)dxzdv is the push-
forward of the initial measure f;(z,v) dz dv by the flow Sy = (X;, Vi)
in phase space, solving the characteristic equations

X;=Vi, Vi=F(t,X), F=-VWixp,

(Xo, Vo) = (z,v).
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Of course this does not solve the problem “explicitly”, since the force F’
at time ¢ depends on the whole distribution of particles via the formula
F=-VWx([ fdv).

Recall that the push-forward of a measure po by a map S is defined
by Sypo[A] = po[ST'(A)]. The resulting equation on the densities gen-
erally involves the Jacobian determinant of the flow at time t. However
in the present case, the flow S; induced by F'(t, ) preserves the Liou-
ville measure dx dv (that is a consequence of its Hamiltonian nature), so
the push-forward equation can be simplified into a pull-back equation
for densities. In other words, the solution f(t,z,v) will satisfy

(2'2) f(t, SO,t(‘I?U)) = f(ov I,U).

Thus, to get the distribution function at time ¢ we should invert the
map S, in other words solve the characteristics backwards. 1If S
stands for the inverse of Sp;, then (2.2) becomes

(2'3) f(t,:E, U) = f(O, St,O(x7U))'

Depending on situation, taste and theory, one considers the nonlin-
ear Vlasov equation either from the Eulerian point of view (focus on
f(t,z,v)), or from the Lagrangian point of view (focus on particle tra-
jectories in a force field reconstructed from the particle distribution).
This affects not only the theory, but also the numerics, since numer-
ical methods may be Eulerian (look at values of f on a grid, say),
or Lagrangian (consider particles moving), or semi-Lagrangian (make
particles move and interpolate at each step to reconstruct values of f
on a grid).

Apart from that, equation (2.1) is a limit of Hamiltonian equations
(the Newton equations), and actually has a Hamiltonian structure in
a certain sense, in relation with optimal transport theory; this link
was explored in particular by Ambrosio, Gangbo and Lott. For the
moment it is not clear whether this striking structure has physically
relevant implications beyond what is already known.

2.3. Invariants and identities

In this section I shall review the four main invariances and iden-
tities associated with the nonlinear Vlasov equation, assuming that
everything is well-defined and being content with formal identities.

e The nonlinear Vlasov equation preserves the total energy

J[ o a5 [[wie—vow ot aeay =740
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is constant in time along solutions. The total energy is the sum of the
kinetic energy T and the potential energy U. (The factor 1/2 in the
definition of U comes from the fact that we should count unordered
pairs of particles. Also, depending on the setting, it may be that the
quantity U defined as above is infinite and should be replaced by U’ =

1/2 [[W(z = y)(p(x) — (p))(p(y) — (p)) dw dy, which formally is the
same as U up to the constant (1/2)([ W) (p)?.)

e The nonlinear Vlasov equation preserves all the nonlinear inte-
grals of the density: often called the Casimirs of the equation, they

take the form
[ vy

where C' is arbitrary. These millions of conservation laws are imme-
diately deduced from (2.3); in other words, they express the fact that
the Vlasov equation induces a transport by a measure-preserving (in
fact Hamiltonian) flow. In particular, all L? norms are preserved, the
supremum is preserved... and so is the entropy:

S:—/ flog f dxdv.

The latter property is in sharp contrast with the Boltzmann equation,
for which the entropy can only increase in time, unless it is at equilib-
rium. Physically speaking, it reflects the preservation of information:
whatever information we have about the distribution of particles at
initial time, is preserved at later times.

e The equation is time-reversible: choose an initial datum f;, let
it evolve by the nonlinear Vlasov equation from time 0 to time 7', then
reverse velocities (that is replace f(T,z,v) by f(T,x,—v)) let it evolve
again for an additional time 7', reverse velocities again, and you will
be back to the initial datum f;. This again is in contrast with the
time-irreversibility of the Boltzmann equation. As a consequence, the
nonlinear Vlasov equation does not have any regularizing effect, at least
in the usual sense.

e The last identity is called the virial theorem; it only holds in
the whole space and for specific classes of interaction. The virial® is

defined as
Vz//f(x,v)xwdwdv

IThis word was made up by Clausius using the latine root for “force”. Clausius
advocated for the use of ancient roots for coining new words, and also devised the
most successful vocable “entropy”.
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is the time-derivative of the inertia

I = //f(a:,v)@dwdv.

If the potential W is even and A\-homogeneous, that is, for any z € RY
and « # 0,

W(=2)=W(z),  W(az)=l|a*W(2),
then one has the virial identity

i =2T — \U.

dt
The most famous case of application is of course the case of Coulomb /Newton
equation, for which A = —1, so that

ay

— =2T+U.
dt +

When one takes a time-average and looks over large times, the
contribution of the time-derivative is likely to disappear, and we are
left with the plausible guess

(2.4) 2T) + (U) = 0,

where (u) = limp_,o T} fOT u(t) dt. Tdentity (2.4) suggests some kind
of biased, but universal partition between the kinetic and potential
energies.

2.4. Equilibria

A famous property of the Boltzmann equation is that it only has
Gaussian equilibria. In contrast, the Vlasov equation has infinitely
many shapes of equilibria.

First of all, any distribution f(x,v) = f°(v) defines a spatially
homogeneous equilibrium. Indeed, v -V, f° = 0, and the density
pY associated to f° is constant, so the corresponding force vanishes
(VW s p° =W % (Vp®) = 0).

The construction of other classes of equilibria is easy by means
of the so-called Jeans theorem: any function of the invariants of the
flow is an equilibrium. As the most basic example, let us search for a
stationary f in the form of a function of the microscopic energy

2
E(x,v)z%%—@(x), O =MW xp,
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where p = [ fdv. Using the ansatz f(z,v) = f(E), where f is an
arbitrary function R — R, we get by chain-rule

v-Vof =V®-V,f =(f)(E) [U-VCD—V@-U] =0,

so f is an equilibrium.
Of course this works only if the potential ® is indeed induced by f,
which leads to the compatibility condition

2
/f (% + CID(y)) Wz —y)dydv = ®(x).
For a given f this is a nonlinear integral equation on the unknown ®;
in the general case it is certainly too hard to solve, but if we are looking
for solutions with symmetries, depending on just one parameter, this
can often be done in practice.

If W is the Coulomb or Newton potential, the integral equation
transforms into a differential equation; as a typical situation, consider
the three-dimensional gravitational case with radial symmetry, then p
and ® are functions of r, and we have after a few computations

p(r) = 4r /@( | V2(E —®(r)) f(E)dE.

This gives p as a function of ®, and then the formulas for spherical
Laplace operator applied to radial functions yield

1 d, ,
2 %(T ®'(r)) = dm p(®),
whence f(z,v) = f(|v]*/2 4 ®(r)) can be reconstructed.
Another typical situation is the one-dimensional Coulomb interac-

tion with periodic data: then the equation is

—d"(z) = /? (%2 + cb(x)) dv — 1,

subject to the condition [ f(v?/2+ ®(z))dv = 1. Such a solution is
called a BGK equilibrium, after Bernstein, Greene and Kruzkal; or
BGK wave, to emphasize the periodic nature of the solution. Such

waves exist as soon as f is smooth and decays fast enough at infinity,
and satisfies [ f(v?/2)dv = 1.

2.5. Speculations

The general concern by physicists is about the large time asymp-
totics, t — 0o. Can one somehow draw a picture of the possible quali-
tative behavior of solutions to the nonlinear Vlasov equations?
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Usually a first step in the understanding of the large-time behav-
ior is the identification of stable structures such as equilibria. In the
present case, the abundance of equilibria is a bit disorienting, and we
would like to find selection criteria allowing to make predictions in large
time.

Are equilibria stable? There is a convincing stability criterion for
homogeneous equilibria, due to Penrose, which will be studied in Chap-
ter 3. But no such thing exists for BGK waves, and nobody has a clue
whether these equilibria should be stable or unstable.

Having no convincing answer to the previous question, we may turn
to an even more difficult question, that is, which equilibria are attrac-
tive? Can one witness convergence to equilibrium even in the absence
of dissipative features in the equation? Does the Vlasov equation ex-
hibit non-entropic relaxation, that is, relaxation without increase
of entropy? This has been the object of considerable debate, and sug-
gested by numerical experiments on the one hand, observation on the
other hand: as pointed out by the astrophysicist Lynden-Bell in the six-
ties, galaxies, roughly speaking, seem to be in equilibrium at relevant
scales, although the relaxation times associated with entropy produc-
tion in galaxies exceed by far the age of the universe. Lynden-Bell
argued that there should be a mechanism of violent relaxation, of
which nobody has a decent understanding.

If the final state is impossible to predict, maybe this problem can
be attacked in a statistical way: Lynden-Bell and followers argued that
some equilibria, in particular those having high entropy, may be favored
by statistical considerations. Maybe there are invariant measures on
the space of solutions of the nonlinear Vlasov equation, which can be
used to statistically predict the large-time behavior of solutions??

In all this maze of speculations, questions and religions, the only
tiny island on which we can stand on our feet is the Landau damp-
ing phenomenon: a relaxation property near stable equilibria, which
is driven by conservative phenomena. In the sequel I shall describe
this phenomenon in great detail; for the moment let me emphasize
that besides its theoretical and practical importance by itself, it is the
only serious theoretical hint of the possibility of dissipation-free relax-
ation in confined systems, without appealing to an extra randomness
assumption.
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[ am not aware of any good synthetic introductory source for bound-
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The Hamiltonian nature of the nonlinear Vlasov equation, in re-
lation with optimal transport theory, is discussed informally in my
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rigorously by Ambrosio & Gangbo [4], and Lott [66, Section 6]. Some of
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Vlasov equation and the two-dimensional Euler equation with nonneg-
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adapt tools and theories from one equation to the other. Early discus-
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for devising recipes of stability, can be found in [48].

The statistical meaning of the entropy, and its relation to the Boltz-
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account can be found in my tribute to Boltzmann [106].

Formal properties of the Vlasov equation, including the virial the-
orem, are covered in many textbooks such as Binney & Tremaine [15].
This reference also discusses the procedure for constructing inhomoge-
neous equilibria.

BGK waves were introduced in the seminal paper [14] and have
been the object of many speculations in the literature; see [61, 62| for
a recent treatment. No BGK wave has been proven to be stable with
respect to periodic perturbations (that is, whose period is equal to the
period of the wave). The only known related statement is the instability
against perturbations with period twice as long [61, 62]. (This holds
in dimension 1, but can probably be translated into a multidimensional
result.) At least this means that a BGK wave f on T x R cannot be
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hoped to be stable if f is 1/2-periodic in z. The very recent work [10]
presents a new result of the linear damping for some inhomogeneous
stationary states.

The idea of violent relaxation was introduced in the sixties by
Lynden-Bell [67, 68], who at the same time founded the statistical
theory of the Vlasov equation. The theory has been pushed by several
authors, and also adapted to the two-dimensional incompressible Euler
equation [25, 74, 91, 101, 102, 109]. Since it is based on purely
heuristic grounds and on just the conservation laws satisfied by the
Vlasov equation (not on the equation itself), the statistical theory has
been the object of criticism, see e.g. [54].

The construction of invariant measures on infinite-dimensional Hamil-
tonian systems has failed for classical equations such as the Vlasov or
(two-dimensional, positive vorticity, incompressible) Euler equations
[89]; but it was solved for certain dispersive equations, such as the
cubic nonlinear Schrédinger equations, treated by Bourgain [20]. As
far as the Vlasov or Euler equations are concerned, there is no canon-
ical choice of what could be a Gibbs measure, but now there might
be hope with Sturm’s construction of a fascinating canonical “entropic
measure” on the space of probability measures [99], coming from the
theory of optimal transport. But for the moment very little is known
about Sturm’s measure, and measures drawn according to this measure
are not even absolutely continuous.






CHAPTER 3

Linearized Vlasov equation near homogeneity

Vlasov, Landau and other pioneers of the kinetic theory of plasmas
discovered a fundamental property: when one linearizes the Vlasov
equation around a homogeneous equilibrium, the resulting linear equa-
tion is “explicitly” solvable; in a way this is a completely integrable
system. This allowed Landau to solve the stability and asymptotic be-
havior for the linearized equation — two problems which seem out of
reach now for inhomogeneous equilibria.

3.0. Free transport

As a preliminary, let us study the properties of free transport, that

is, when there is no interaction (W = 0):
af

3.1 — +v-V,.f =0

The properties of this equation differ much in the whole space R?
and in the confined periodic space T¢. In the former case, dispersion
at infinity dominates the large-time behavior, while in the latter case
one observes homogenization phenomena due to phase mixing as
illustrated in Fig. 3.1.

v

FiGure 3.1. Put an initial disturbance along a line at
t = 0. As time goes by, the free transport evolution
makes this line twist and homogenize very fast.

Phase mixing occurs for mechanical systems expressed in action-
angle variables when the angular velocity genuinely changes with the
action variable. In the present case, the angular variable is the position,

31
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so the angular velocity is the plain velocity, which coincides precisely
with the action variable.

FIGURE 3.2. An example of a system which is not mix-
ing: for the harmonic oscillator (linearized pendulum)
the angular velocity is independent of the action vari-
able, so a disturbance in phase space keeps the same
shape as time goes by.

The free transport equation can be solved explicitly: if f; is the
datum at ¢t = 0, then

(3.2) f(t,z,v) = fi(x — vt,v).

The simplicity of this formula is deceptive, and the free transport equa-
tion displays much trickier behavior than one would imagine at first.

To study fine properties of this solution, it is most convenient to
use the Fourier transform. Let us introduce the position-velocity
Fourier transform

f(k‘, 77) _ / f(I,U) e 2Tk o =2iTnv 10 dv,

where k € Z% is dual to = € T¢, and n € R? is dual to v € R%. Then
(3.2) implies

(3.3) Ft k,n) / filw — vt, v) e 2T THT g dy
_ / fz(x, U) e—2z’7rk~(a:+vt) 6—2i7r77-v dx dv

= fi(k,n + kt).

The last formula has been obtained by just rewriting & - (vt) as v - (kt)
in the argument of the complex exponential. It is similar to (3.2), up to
swapping the two variables and changing the direction of time; in fact
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one may notice that the Fourier transform of the transport equation is
a transport equation in Fouriter space:
of -
— —k-V,f=0.
ot o

Anyway, we deduce from (3.3) that
. N(t, 0,n) = J?Z-(O, n): the zero spatial mode of f is preserved;

e for fixed n and k # 0, fi(k,n+ kt) — 0 as t — oo, at a
rate which is (a) determined by the smoothness of f; in v (Riemann—
Lebesgue lemma), (b) faster when k is large. In fact, the relevant time
scale for the mode k is |klt.

In particular, if f; is analytic in v then f; decays exponentially
fast in n, so the mode £ of the solution of the free transport equation
will decay like O(e=2™*It) Also, if f is only assumed to be Sobolev
regular, say W#*! in the velocity variable for some s > 0, then the
Fourier transform will decay like O(|n|~*) at large values of ||, so the
mode of order k will decay like O((|k[t)™*).

We can represent this behavior of the free transport equation, in
Fourier space, as a cascade from low to high velocity modes, the cascade
being faster for higher spatial modes. Spatial oscillations generate, in
large time, very strong kinetic oscillations.

k = —_—
(spatial tnodes) t =11 t =12 t=t3
= 7 7 =
ja /@/
-
T (kinetic modes)

initial configuration

(t=0)

FI1GURE 3.3. Schematic picture of the evolution of en-
ergy by free transport, or perturbation thereof; marks
indicate localization of energy in phase space.
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REMARK 3.1. In view of this discussion, the free transport equation
appears to be a natural way to convert regularity into a time decay,
which can in principle be measured from a physical experiment!

REMARK 3.2. Even though the free transport equation is reversible,
there is a definite behavior as t — +o00: f(t, k,n) converges to 0 for all
k # 0, and to f;(0,n) for K = 0. This means that

f(tvm7v) V::a_ti)}’} <f2>7

where the brackets stand for spatial average:

() (v) = / h(z,v) da.

The convergence holds as long as the initial measure does have a den-
sity, that is, f; is well-defined as an integrable function; and it is faster
if f; is smooth. Note carefully that the convergence is weak, not strong;
in fact the L? norm of f—(f) does not converge to 0, it remains constant
as t — oo. Indeed,

5= 0= [[ Pazav= [(r7a

is the difference of two quantities which are separately conserved.

REMARK 3.3. Why don’t we see such phenomena as recurrence,
which are associated with confined mechanical systems? The answer
is that as soon as the distribution is spread out and has a density,
we do not expect such phenomena because the system truly is infinite-
dimensional. Recurrence would occur with a singular distribution func-
tion, say Dirac masses, but we ruled out this situation. Of course one
may argue that the true physical system is finite, however if the par-
ticles are extremely numerous the recurrence times will be enormous,
and the behavior is, (hopefully!) accurately described by the continu-
ous model.

3.1. Linearization

Now let us go back to the Vlasov equation. Let f° = f°(v) be
a homogeneous equilibrium. We write f(¢,z,v) = f°(v) + h(t, z,v),
where ||h]] < 1 in some sense. Since fY does not contribute to the
force field, the nonlinear Vlasov equation becomes

%+v-vxh+F[h]-vy(f°+h):0,



3.1. LINEARIZATION 35

where
Flt(t2) =~ [ [ VWia =) it yw) dydw = V.00 <0

When h is very small we expect the quadratic term F'[h] - V,h to
be negligible in front of the linear terms, and obtain the linearized
Vlasov equation

(3.4) %—l—v-vxh%—F[h]-Vny:O.

The physical interpretation of (3.4) is not so obvious. Assume that
we have two species of particles, one that has distribution A and the
other one that has distribution f°, and that the h-particles act on the
fO-particles by forcing, still they are unable to change the distribution
f° (like you are pushing a wall, to no effect). In this case, we can
imagine that the changes in the f° density would be compensated by
the transmutation of h-particles into f°-particles, or the reverse. Then
the equation for f9 will be

(3.5) F[h)-V,f" =38,

where S is the source of f° particles, and thus the equation for A would
be

oh
(3.6) BT +v-V,h=-5.
The combination of (3.5) and (3.6) implies (3.4). Thus, in some sense,
equation (3.4) can be interpreted as expressing the reaction exerted
by the “wall” f° on the particle density.

We note that the last term on the right-hand side of (3.4) has the
form F[h] - V,f° where F[h] is a function of ¢ and x, and f°(v) is a
function of v. This property of separation of variables will be crucial.
As a start, it implies the statement below.

PROPOSITION 3.4. If h = h(t,z,v) evolves according to the lin-
earized Vlasov equation (3.4), then the function (h) = [ h(t,z,v)dx
depends only on v and not on t.

An equivalent statement is that the linearized Vlasov equation
has an infinite number of conservation laws: for any function ¥ (v),
[ hipdvdz is a conserved quantity.
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PROOF OF PROPOSITION 3.4. First note that (V,h) = 0 and (F[h]) =
0, since F'[h] is a gradient. So (3.4) implies
On(h) = =(v - Vph) = (F[A] - Vo f?)
=—v- <Vxh> - <F[h]> ’ vao =0.
O

3.2. Separation of modes

Let us now work on the linearized equation, in the form

(3.7) %—H} V.h+ F[h]-V,f° = 0.

Solving this equation is a beautiful exercice in linear partial differential
equations, involving three ingredients (whose order does not matter
much): the method of characteristics, the integration in v, and the
Fourier transform in z.

e First step: the method of characteristics. We apply the
Duhamel principle to (3.7), treating it as a perturbation of free trans-
port. It is easily checked that the solution of ;h +v -V, h = —5 takes
the form

h(t,z,v) = hi(x — vt,v) /S ,x —vu(t—71),v)dr,

where h;(x,v) = h(0,z,v).

e Second step: Fourier transform. Taking Fourier transform
in both x and v yields

(3 8)

t k,m) // — vt,v) e HTT T2 o dy
/// o — vt —7),v) e 2T T2 dy dy dr

(3.9) = // hi(z,v) e~ 2k (zvt) o =20 g0 gy,

. /// S(T, I’,’U) 6—2i7rk-a: 6—2i7rk~v(t—7') 6—2i7r77-v dr dv dr

~ t~
= h;(k,n + kt) —/ S(T, k:,TH—k(t—T)) dr,

0
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where I used the measure-preserving change of variables (x — vt,v) —
(x,v), and the obvious identity k- (vs) = v-(ks) to absorb the time-shift
into a change of arguments in the Fourier variables.

Now we note that the structure of separated variables in the term
S and the properties of Fourier transform imply

VW pH (7, k) - Vo fO(n)
2z7rkW (k) p (T k)) - (27;7”7]70(77))
=42k - W (k) p (1, k) fO(n),

S(r, ko) = F(r,k) - Vo f(n)
(—
(-

where p'(t,xz) = [ h(t,z,v)dv is the first-order approximation of the
spatial density, after the mean density has been taken out. Combining
this with (3.8) we end up with

(3.10) h(t, k,n) = hi(k,n+ kt)
4T (k) /0 B k) Fon+ k(t — 1) k- [+ Kt — 7)) dr.

Third step: Integrate in v. This amounts to consider the Fourier
mode 1 = 0 in (3.10):

Pt k) = hi(k, kt) — Ar*W (k) /0 P (1, k) fo>k(t — 7)) |k|> (t — 7) dr.

To recast it more synthetically:

(3.11) Pt k) = hi(k, kt) + /t K°(t — 7, k) pU(7, k) dr,
where
(3.12) KOt k) = —Ax> W (k) fO(kt) |k|*t.

Now appreciate the sheer miracle: the Fourier modes p*(k), k € Z,
satisfy a closed equation and evolve in time independently of each other!
In a way this expresses a property of complete integrability, which can
actually be made more formal.

Of course identity (3.12) is interesting only for k # 0; we already

know that p'(¢,0) = hi (0,0) is preserved in time.
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3.3. Mode-by-mode study

If k is given, equation (3.11) is a Volterra equation, which in
principle can be solved by Laplace transform. Generally speaking,
if we have an equation of the form ¢ = a + K * ¢, that is

o(t) = alt) + / K(t — ) o) dr,

then it can be changed, via the Laplace transform

(313) = [ e
0
into the simple equation
ol = aF 4 KE b,

whence

aL

“ToRT

which is well-defined at A € R if A*(\) and K*()) are well-defined (for
instance if a and K decay exponentially fast and A is small enough),
and (careful!) if KE(\) # 1.

At this point it is useful to define the complex Laplace transform:
for £ € C,

(3.15) P (€) = /000 €™ (L) d.

It is well-known that the reconstruction of ¢ from its Laplace transform
involves integrating ¢* on a well-chosen contour in the complex plane,
which has to go out of the real line and should be chosen appropriately.
Since Landau, many authors have discussed this tricky issue, by now
very classical in plasma physics.

However, the reconstruction gives more information than we need:
what we want is not the complete description of h, but its time-
asymptotics. The following lemma will be enough to achieve this goal:

(3.14) o

LEMMA 3.5. Let K = K(t) be a complex-valued kernel defined for
t >0, such that

(i) ¥Vt >0, |K(t)] < Coe 2™ for some Cy, Ay > 0;
(ii) AN > 0; KL(&) # 1 for all € € C with Reé < A.

Let further a = a(t) be a complex-valued function such that

vt >0, |a(t)] < ae”™,
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and let ¢ solve the equation ¢ = a + K % ¢. Then for any N <
min(A, Ag, A),

(3.16) VE>0, |o(t)] < Cae 2Nt
where C' = C(\, N, A, X\, Cp) (1 + k1),

(3.17) m:inf{|KL(§)—1|; Reg:A}.

REMARK 3.6. The fast decay of K at infinity implies that the re-
striction of K*(€) to the axis Re ¢ = A achieves its minimum, therefore
x > 0 under assumptions (i)-(ii). Further note that by maximum prin-
ciple, in the definition of k it is equivalent to impose the condition
Re& = A or the apparently weaker condition Re& < A.

Let us express Lemma 3.5 in words: If the kernel K decays ex-
ponentially fast and satisfies the stability condition K* # 1 in a half
space {Re& < A} (see Fig. 3.4), then the solution ¢ decays in time
at a rate which is limited only by the time-decay of the source, the
time-decay of the kernel, and the size of A.

(K" =1)

Reé&

FIiGURE 3.4. A > 0 is chosen so that the half plane
Re & < A contains no complex root of { K* = 1}.
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PROOF OF LEMMA 3.5. Let us write ®(t) = ™ (1), A(t) =
e>™* a(t). The convolution equation ¢ = a + K # ¢ becomes

(3.18) () = A(t) + / t K(t — 7)) o(7) dr.

Taking Laplace transforms yields
Oh(€) = AR(E) + KM (X +€) 2(9),

whence

_ AN
1 KEWV+€&)

provided these Laplace transforms are well-defined and K*(X +¢) # 1.

The decay assumption on a immediately implies that AX(¢) is well-
defined for Re& < A — X; similarly, KZ(N + €) is well-defined for
Re& < N\g— N, and does not take the value 1 for Re& < A —)N. So the
right hand side of (3.19) makes perfect sense in a half-space Re{ < 3,
where

(3.20) £ =min(\, Ao, A) — X >0

(3.19) (&)

Let us assume that the left hand side of (3.19) is also well-defined
in the same half-space, and obtain the desired conclusion from there.
(This estimate will only use the fact that K (¢) does not achieve the
value 1 on the line Re& = \.)

To do this, rather than inverting the Laplace transform, it is simpler
to particularize the identity (3.19) to the imaginary axis, setting { =
iw, w € R. Then ®X(¢) = d(w) = Jo° ®(t) e 2™ dt is the Fourier
transform of ®, where the latter function has been extended by 0 for
t < 0. So (3.19) implies

__ Aw)
11— KL(XN 4 iw)’

Then, from (3.17) and Remark 3.6, the denominator in the right-hand
side of (3.21) is bounded below by &, hence

(3.21) d(w) Yw € R.

_ i
500 < LAY

Therefore, by Plancherel’s identity and the decay assumption on A,

- | All £2ar) - a

o .
[Pl = == = W)
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Now plug this back in the equation (3.18), to get

B roeri < [ All +HK 2Nt *ch
|| Loo(ary < N AllLooary + || (K eT™F) e
< || Al poeqar) + 1K €™ L2 any ||| L2 (ary

C() (%
VAT = N) K fAr(A =N

< a-+

whence the desired result.

Now it is time to come back to identity (3.19) and be more careful

about the justification. The logical problem is that ® does not a priori
make sense unless we know that ¢(t)e*™* belongs to a class where the
Fourier transform is well-defined (say L'(dt) for a classical definition,
or at least in Schwartz class for a definition by duality); but maybe
this is an exponentially growing function, in which case d might not
be well-defined. Of course, the estimate we are looking for establishes
an L bound on ®, but using it to justify the existence of & would be
a circular reasoning.

Analytic continuation arguments will be useful to get out of this
trap. First recall that K and A are bounded, so the integral inequality
(3.18) implies, via Gronwall’s lemma, the crude bound

(3.22) D) < ae,  C =2\ +C,.

Next, for pn € R let ®,(t) = e*™d(t), so that &\Ju(w) = OF(p + iw).
Similarly define A,(t) = ™ A(t), Kyy»(t) = WK (). Then

P, is well-defined for pp < —C'/(27), and for such p the identity (3.19)
holds with £ = p + iw. Equivalently:

= —
L= Kyyp
We would like to take the analytic continuation right now, but so
far there is no guarantee that ®, exists as p approaches 0. So for
6> 0,let @, 5(t) = e 2/2®,(t). Then @, ; has a fast decay at infinity,
whatever 1 € R and 6 > 0, and it varies analytically with respect to
these parameters. Moreover, replacing multiplication by convolution
under the Fourier transform, we have the identity

~ w\2

= = A e 25
P s=P, %7y =| ——— | *s, vs(w) = )
: : (1 — KX-I—,u ) 27w0

This identity holds true only for i negative enough, but the left hand
side and the right hand side are well-defined and vary analytically with

(3.23)
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respect to their parameters p,d and their argument w (Fourier fre-
quency), throughout the region p < 3, where 3 > 0 is given by (3.20).
By analytic continuation, it follows that

~ A
Dy = ~— | *7s-
1— Ky

In particular, since f vs =1,

A
1— Ky

- 14l

10,5122 =
K

Y

LQ
which provides a bound on || ®(t) e=*/2|| 124, independent of § > 0.
Letting 6 — 0 and applying the monotone convergence theorem yields

® € L*(dt), and we are done. O

Let us apply Lemma 3.5 to (3.11). The kernel K°(t, k) decays as
a function of ¢, exponentially fast if f° is analytic, more precisely like
O(e=2™IFlt) for any N < \g. (The important remark is that time ap-
pears through |k|t.) Similarly, the source term h;(k, kt) is O(e=2™ilkt)
if h; is analytic. So in order to ensure the exponential decay of p'(t, k)
like O(e=2™I*I) it only remains to check that there is Az > 0 such
that

(3.24) 0<ReéE < Mlk|l = (K" (¢, k) #1,
where

(K*)H (&, k) = / e KO(t, k) dt.
0

That condition, implicit in Landau’s argument, was introduced
by Backus. When it is satisfied, p'(¢, k) converges to 0 at a rate
which is exponential, uniformly for |k| > 1, and more precisely like
O(exp(—27XN|k|t)). In particular, p'(¢,-) converges exponentially fast
to its mean, and the associated force F[h] also converges exponentially
fast to 0; this phenomenon is called Landau damping. For mnemonic
means, you can figure it in the following way: if you keep pushing on
a wall, the wall will not move and you will exhaust yourself.

Before going on, note that the conclusion would be different if the
position space X% was the whole space RY rather than T%: then the
spatial mode k would live in R? rather than Z? (no “infrared cutoff”),
and there would be no uniform lower bound for the convergence rate
when k becomes small. As a matter of fact, counterexamples by Glassey
and Scheffer show that the exponential damping of the force does not
hold true in natural norms if X¢ = R?, f° is a Gaussian and the
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interaction is Coulomb. Numerical computations by Landau suggest
that the Landau damping rate in a periodic box of length ¢ decays
extremely fast with ¢, like exp(—c/¢?).

In the sequel, I shall continue to stick to the case when the position
space is T<.

3.4. The Landau—Penrose stability criterion

Of course, the previous computation is hardly a solution of the
problem, because the stability criterion (3.24) involves the form of the
distribution function f° in a quite indirect way. Now the problem is
to find more explicit stability conditions expressed in terms of f°. For
the moment we shall consider general potentials TV.

If £ € C satisfies Re& < Ap|kl, let us write £ = (X + iw)|k| with
AMweR A< AL Then

(KO)L(f, k‘) _ /O Ko(t, k) 627r)\\k|t 672i7rw|k\t dt

> /W(k)/ fNO(kt) p2m ALkt —2imw|k|t |k:|2t dt
0

k .
(_u 627r>\u e—?mrwu w du.

:—4W2W(/€)/ (i

0

Since fO(n) = O(e~2™l) the integrand above is exponentially de-
caying as a function of |u| for A < \g. Moreover f°(ou) is uniformly
continuous as a function of u, uniformly in o = k/|k|. It follows from
these estimates that (a) by Riemann’s lemma, (K°)*(£,k) — 0 as
w — oo, uniformly in k; (b) (K% (&, k) is continuous as a function of
A, uniformly in w and k. Thus (3.24) will be satisfied for some Ay, > 0 if
and only if it is satisfied for A\, = 0. To summarize: under suitable ana-
lytic regularity estimates, to check the stability of the linearized Vlasov
equation it is sufficient to check that (K°)%(&, k) does not achieve the
value 1 in the half-space {Re ¢ < 0}.

The next step is to replace the half-space by the imaginary axis.
Let k& be given, and for ¢ € C in a neighborhood of the half-space
Reé < 0let fr(§) = (K°)E(E, k). As noted earlier fi,(€) goes to 0 as
|Sm €| — oo; and it also obviously goes to 0 as Re& — —oo. Then,
for €2 > 0 let Cg be the closed contour in the complex plane made of
the line [—i$2,iQ)] followed by the half-circle Qe*™ 7/2 < § < 37/2.
Assume that f, does not achieve the value 1 on the imaginary axis
(Re z = 0); then it does not achieve the value 1 on the contour Cg,
and by Rouché’s theorem the number N of roots of (fi(£) = 1) in the
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interior of Cq is given by the integral

LSO

21 Joo f k(f)
As ) — oo, this approaches

/fkfk (it) /de_zl’ Iy = fi(iR).

One can extend I'j into a closed loop by adding the value 0; as w runs
from —oo to 400, fi(iw) describes a closed path starting from 0 and
ending at 0. To make sure that ka dz/(z — 1) = 0, i.e. that 'y does
not circle around 1, it is sufficient to impose that ['y never cross the
real axis beyond 1, i.e. [y N{Rez =0} C [-o0,1).

After these preparations, we have obtained a stability criterion
which is much more tractable: defining

(3.25) U(w, k) = (K°) (w|k|, k) = /0 h KO(t, k) e~ 2melklt g

check that for any w € R and k € Z%\ {0},
(3.26) SmVU(w, k) =0 = ReV¥(w, k) <1

The next step is to compute a more explicit expression for ¥(w, k).
From now on we shall assume that W is even:

(3.27) Ve T  W(—2)=W(z).

This natural assumption will imply that W is real-valued.
As a start, let us assume d = 1 and k > 0 (so k € N). Then we
compute: for any w € R,

(3.28)
/ eQim.ukt Ko(t, k) dt
0
— lim 6—27r)\kt €2i7rwkt KO (t, k’) dt
A—0F 0
— —47'('2 W lim / /fO —2z7rktv —27r)\kt 227rwkt ]{32 tdu dt
A—07t

_ —47T2 W lim / /fO 7217rvt 727r)\t ZZﬂwtth dt.

A—0t

Then by integration by parts, assuming that (f°)’ is integrable,

/RfO(,U) 672i7rvttdv — i /(fo)/(v) 672i7rvt dv.
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Plugging this back in (3.28), we obtain the expression

2inrW (k) lim (fo)’(v)/ e~ A=t gt gy,
0

A—0F
Next, recall that for any A > 0,
1

> =27 [Ai(v—w)]t _ .
(& dt = ;
/0 27r[)\+z'(v —w)]

indeed, both sides are holomorphic functions of z = A+ i(v —w) in the
half-plane {Rez > 0}, and they coincide on the real axis {z > 0}, so
they have to coincide everywhere. We conclude that

o 0/
(3.29) Ww k) = W) tim [ @ g

A0t | v —w—iN

The celebrated Plemelj formula, recalled in an Appendix, states
that

(3.30) L v (1) +irdy  in D'(R),

x—10 x

where the left-hand side should be understood as the limit, in weak
sense, of 1/(z — iA) as A — 0. The abbreviation p.v. stands for
principal value, that is, simplifying the possibly divergent part by using
compensations by symmetry when the denominator vanishes; also this
notion is recalled in the Appendix. Combining (3.29) and (3.30) we
end up with the neat identity for ¥ in (3.26):
0y
(3.31) U(w, k) = W(k) Kp.v./%dv) —|—z'7r(f0)’(w)] :

Since W is real-valued, the above formula yields the decomposition of
the limit into real and imaginary parts. The problem is to check that
the real part always stays below 1 when the imaginary part vanishes.

As soon as (f%)(v) = O(1/|v]), we have [(f°)(v)/(v—w)dv =
O(1/|wl|) as |w| — oo, so the real part in the right-hand side of (3.31)
becomes small when |w]| is large, and we can restrict the discussion to
a bounded interval |w| < €.

Then the imaginary part, /W(k) 7(f°)(w), can become small only
in the limit & — oo (but then also the real part becomes small) or if
w approaches one of the zeroes of (f°)’. Since w varies in a compact
set, by continuity it will be sufficient to check the condition only at
the zeroes of (f°)". In the end, we have obtained the following stability
criterion: for any k € N,

VvV —Ww

(3.32)  VweR, () (w) =0 = W(k) / ) dv < 1.
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Now if £ < 0, we can restart the computation as follows:

/ €2i7rw\k|t Ko(t, k‘) dt =

0

A—0t

. 47'('2 /W(k) lim / /fO(U) e—?zﬁrktv 6—27r>\\k|t e2i7rw|k\t ‘]{3‘2th dt,
0

then the change of variables v — —wv brings us back to the previous
computation with k replaced by |k| and f°(v) replaced by f°(—wv).
However, it is immediately checked that (3.32) is invariant under re-
versal of velocities, that is, if fO(v) is replaced by f°(—wv). Let us
summarize what has been achieved.

PROPOSITION 3.7 (Sufficient condition for stability in dimension 1).
If W is an even potentiel with VW € LYT), and f° = f°(v) is an
analytic profile on R such that (f°)(v) = O(1/|v]), then the Viasov
equation with interaction W, linearized near f°, is linearly stable under
analytic perturbations as soon as condition (3.32) is satisfied for all

k#0.

Let us now examine some examples.

EXAMPLE 3.8. Consider the Newton interaction, W (k) = —1/|k|?,
with a Gaussian distribution

Then (3.32) is satisfied if p°3 < |k|* for all k # 0, that is if 3 < 1/p":
the Gaussian should be spread enough to be stable. In physics, there is
a multiplicative factor G in front of the potential, the temperature 1" =
3~ 1 is typically given and determines the spreading of the distribution,
the density is given, but one can change the size of the periodic box
by performing a rescaling in space: the result is that the stability
condition is satisfied if and only if L < L;, where L; is the so-called

Jeans length,
[T
LJ - g—po

It is widely accepted that this is a typical instability length for the New-
tonian Vlasov—Poisson equation, which determines the typical length
scale for the inter-galactic separation distance, and thus provides a
qualitative answer to the basic question “Why are stars forming clus-
ters (galaxies) rather than a uniform background?”
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ExAMPLE 3.9. Consider the Coulomb interaction, /W(k) = 1/|k|>.
If f° has only one maximum at the origin, and is nondecreasing for
v < 0, nonincreasing for v > 0 (for brevity we say that f° is increas-
ing/decreasing), then obviously

0y/
JEECr
v
and (3.32) trivially holds true, independently of the length scale. This
is the Landau stability criterion. It works the same for any W such

that W > 0.

ExXAMPLE 3.10. Still for Coulomb interaction, if f° is not increas-
ing/decreasing, then (f°)" might have several zeroes, and there is no

definite sign for the left-hand side in (3.32). Since all values of /W(k;)
are lying between 0 and 1, (3.32) is implied by the strict inequality

(3.33) Vw € R, (fYY(w)=0 = /%dv <1

This is the Penrose stability criterion. If f° is a small perturbation
of an increasing/decreasing distribution, so that it has a slight sec-
ondary bump, then the Landau criterion will no longer hold, but the
Penrose criterion will still be satisfied, and linear stability will follow.
But if the bump is larger, one can have linear instability (bump-on-
tail instability, or two-stream instability).

v

Ficure 3.5. Bump-on-tail instability: For a given
length of the box, there will be linear instability for
some large enough secondary bump. Conversely, if a
non-monotone velocity distribution is given, there will
be instability for some large enough size of the box.

Finally let us generalize this to several dimensions. If k € Z\ {0}
and £ € C, we can use the splitting

k k
v=—7r4+w, wlk, r=-—- v

K| K|
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and Fubini’s theorem to rewrite

( O)L(f ]{) —47?2 /W( )V{‘Z/ fO( ) 72i7rkt-vt627r§*tdvdt

= —47T2W k) |k|? / / / (ir + w) dw | e 2kt 277 g qt
r+kt ‘k‘

(K]

where k* is the hyperplane orthogonal to k. So everything is expressed
in terms of the one-dimensional marginals of f9. If f is a given function
of v € RY, and o is a unit vector, let us write o+ for the hyperplane
orthogonal to o, and

(3.34) WweR £ (v) :/+ () du.

Then the computation above shows that the multidimensional stabil-
ity criterion reduces to the one-dimensional criterion in each direction
k/|k|. Let us formalize this:

DEFINITION 3.11 (Penrose’s stability criterion). Let W be an even
potential on T¢ with VW € L}(T?). We say that fO = f°(v) satisfies
the generalized Penrose stability criterion for the interaction potential
W if for any k € Z¢, and any w € R,

(f3)'(v) k

dv < 1, o= —.
v—w ||

(1@) =0 — (e [ Y

ExAMPLE 3.12. The multidimensional generalization of Landau’s
stability criterion is that all marginals of f are increasing/decreasing.

ExXAMPLE 3.13. If f is radially symmetric and positive, and d > 3,
then all marginals of f° are decreasing functions of |v|. Indeed, if

o(v) = fRd*l f(y/v? + |w|?) dw, then after differentiation and integra-
tion by parts we find

go’(v):—(d—B)U/Rd_lf(\/UQjL\wP)% (d>4)

¢'(v) = =2mof(v])  (d=3).

3.5. Asymptotic behavior of the kinetic distribution

Let us assume stability, so that the force F'[h] converges to 0 as
t — o0, exponentially fast in an analytic setting. What happens to h
itself?
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Starting again from

(3.35) h(t,k,n) = hi(k,n+ kt)

t o~
—47* W (k) / PHTE) foly +k(t —7)) k- [7] + k(t — 7')} (t —7)dr
0
we can control the integrand on the right-hand side by the bounds
[Ar, k)] = 0™, |fo()] = (™M),

Sacrificing a little bit of the 7-decay of |p] to ensure the convergence
of the 7-integral, using |n + kt| < |n + k(t — 7)| + |k7|, and assuming
|k|W (k) = O(1) (which is true if VW € L'), we end up with

A2 /W(k:)/o pl(T, k) J?O(U Fk(t—T) k2 (t—T)dr| =0 <€—27r>\"|77+k't|) 7

where \” is arbitrarily close to A’. Plugging this back in (3.35) implies
(3.36) (At k) — ha(k, 5 + kt)| < C 72l

It is not difficult to show that the bound (3.36) is qualitatively optimal;
it is interesting only for k£ # 0, since we already know E(t,O,n) =
hi(oa 77)'
Let us analyze (3.36) as time becomes large. First, for each fixed
(k,n) we have lNL(t, k,n) — 0 exponentially fast, in particular
h(tv ) t—>—00> <hz>a

weakly

and the speed of convergence is determined by the regularity in velocity
space: exponential convergence for analytic data, inverse polynomial
for Sobolev data, etc. N

However, for each t one can find (k,n) such that |h(t, k,n)| is O(1)
(not small!). In other words, the decay of Fourier modes is not uniform,
and the convergence is not strong. In fact, the spatial mode & of h(¢, -)
undergoes oscillations around the kinetic frequency n ~ —Fkt in the
velocity variable as t — o00; so at time ¢, the typical oscillation scale
in the velocity variable is O(1/|k|t) for the mode k. How much high
(spatial) frequency modes affect the whole distribution A depends on
the respective strength of these modes, that is, on the regularity in the
x variable; but in any case the kinetic distribution h will exhibit fast
velocity oscillations at scales O(1/t) as t goes by. The problem only
arises in the velocity variable: it is an easy exercice to check that the
smoothness in the position variable is essentially preserved.

However, if one considers h along trajectories of free transport, the
smoothness is restored: (3.36) shows that h(t, k,n— kt) is bounded like
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O(e=2™"I") so we do not see oscillations in the velocity variable any
longer. Let us call this the gliding regularity: if we change the focus
in time to concentrate on modes 1 ~ —kt in Fourier space, we do see
a good decay. Equivalently, if we look at h(z + vt,v), what we see is
uniformly smooth as t — oo.

Here is an alternative way to consider this procedure. As ¢t — oo,
the force field vanishes, so the linearized Vlasov equation is asymptotic
to the free transport evolution. Now the idea is to let the distribution
evolve according to the linearized Vlasov for time ¢, then apply the free
evolution backwards from time ¢ to initial time, and study the result.
Comparison of the perturbed evolution to the free evolution is very
common in classical and quantum mechanics, where it is used to define,
in various asymptotic regimes, the so-called interaction representations,
wave transforms, and scattering operators.

3.6. Qualitative recap

Let me reformulate and summarize what we learnt in this section.
I shall start with a precise mathematical statement.

THEOREM 3.14. Let fO = fO(v) be an analytic homogeneous equi-

librium, with | fO(n)| = O(e™2™M) and let W be an even interaction
potential such that VW € LY(T9). Let K° be defined in (3.12); as-
sume that there is A\, > 0 such that the Laplace transform (K°)*(&, k)
of K°(t, k) stays away from the value 1 when 0 < Re& < Aplk|. Let
h; = hi(x,v) be an analytic initial perturbation such that h;(k,n) =
O(e=2I). Then if h solves the linearized Viasov equation (3.4) with
wiatial datum h;, one has exponential decay of the force field: for any
k#0,
FIRI(t. k) = O™,

for any N < min(Ag, A, \). Moreover, Penrose’s stability condition
(Definition 3.11) guarantees the existence of such a A, > 0.

REMARK 3.15. Following Landau, physics textbooks usually care
only on A and forget about g, A; so they implicitly assume that f°
and h; are entire functions (then one can choose A\g and Ay, arbitrarily
large). But in general one should not forget that the damping rate does
depend on the analytic regularity of f° and h;.

Beyond Theorem 3.14, one can argue that the four key ingredients
leading to the decay of the force field are

e the confinement ensured by the torus;

e the mixing property of the geodesic flow (z,v) — (x + vt, v);
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e the Riemann—Lebesgue principle converting smoothness into de-
cay in Fourier space;

e a stability condition coming fom the study of the Volterra equa-
tion, in this case the generalized Penrose criterion.

The first two ingredients are important: as I already mentioned,
there are counterexamples showing that decay does not hold in the
whole space, and it is rather well-known from experiments that damp-
ing may cease when the flow ceases to be mixing, so that for instance
trapped trajectories appear. As for the third ingredient, it is subject to
debate, since there are many points of view around as to why damping
holds (wave-particle interaction, etc.), but in these notes I will advocate
the Riemann—Lebesgue point of view as natural and robust.

Now as far as the regularity of h is concerned, one should keep in
mind that

e the regularity of h deteriorates in the velocity variable, as it
oscillates faster and faster in v as time increases;

e there is a cascade in Fourier space from low to high kinetic modes,
which on the mean is faster for higher position modes — it is like a
shear flow in Fourier space;

e the distribution function evaluated along trajectories of the free
flow, h(t,z + vt,v), remains very smooth, uniformly in time (gliding
regularity).

While the regularity of A deteriorates in the kinetic variable, on the
contrary, the regularity of the force field increases with time, since (in
analytic regularity)

~

(3.37) F(t,0)=0,  |F(t,k)| = O(e 2™k,

Of course this implies the time decay of F' like O(e=2™), but (3.37) is
much more precise by keeping track of the respective size of the various
modes. A simplistic way to summarize these apparently conflicting be-
haviors is that there is deterioration of the regularity in v, improvement
of the reqularity in x.

In the study of the linearized equation, we can live without knowing
all this qualitative information, and it is not surprising that it has
apparently never been recorded in a fully explicit way. But this will
become crucial in our analysis of the nonlinear equation.
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3.7. Appendix: The Plemelj formula
The Plemelj formula states that, in D'(R),

1 1
(3.38) = p.v. (—) + i do;

x — 10 T

or equivalently,

1 1
3.39 =p.v.| = | —imp.
(3.39) = (3) i

Let us recall that
(1) . 1\9:\25
pv. | —) =lim ——.
X e—0 X

A more explicit expression can be given for this limit. Let y be an
even function on R with x(0) = 1, x € Lip N L*(R); in particular
[ 1asex(z)de/z = 0 and (1 — x(z))/z is bounded. Then for any
¢ € Lip(R) N L'(R),

(3.40)
/x>e %:U) e /x>€ %:U) x@)de+ /|x|>5 @ (1= x(z)) dz
G = Ty e
—/ (M ; SO(O)) @+ [ oo 2D g,

Then (3.38) can be rewritten in a more explicit way as follows: for any
¢ € Lip(R) N LY(R) and any y satisfying the above assumptions,

(3.41)
iy [ g [ (ERO ) [ O2ED
+ imp(0).

Now, let us prove the Plemelj formula. Pick up x € Lip N L*(R)
and write, for a given A > 0,

(3.42)
/M dx = / (790(:1:) — gp(O)) x(z) dx + /go(x) = xlz)) X(x)) dx

T — 1\ T — 1\
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As A — 0, the first two integrals on the right-hand side of (3.42)
converge to the first two integrals on the right-hand side of (3.40); so
it only remains to check that

(3.43) / X@) g, in.

T — 1A A0+
If (3.43) holds for some particular x satisfying the requested condi-
tions, then (3.38) follows and it implies that (3.43) holds for any such .
So let us pick one particular y, say y(z) = e ", which can be extended
throughout the complex plane into a holomorphic function. Then since
the complex integral is invariant under contour deformation, for ¢ > 0

we have
2 2

e r e~
dr = d
/Rx—i)\ . /ng—i)\ =

where C. is the complex contour made of the straight line (—oo, —¢),
followed by the half-circle D, = {—ee'}¢<g<r, followed by the straight
line (g, 00) (see Figure 3.6).

Next,

2 2

e * e "
—dz dz.
. % — I\ A—0 z
1> 1>

In the latter integral, the contributions of both straight lines (—oo, —¢)
and (e, 0o) cancel each other by symmetry, so it only remains | D e dz)z =
imw. This concludes the proof.

FiGURE 3.6. The contour C., comprising two straight-
lines and a half-circle D,.

3.8. Appendix: Analyticity and regularity

Analyticity is defined by the property of local summability of the
Taylor series. Of course this obviously implies smoothness at all orders,
but it does so in a uniform way, which can be quantified. There are two
main ways to express this uniform regularity: in an informal writing,
these are (i) f = O(A™n!); (ii) f decays exponentially fast at high
frequencies. The proposition below provides a precise statement in the
setting of periodic functions (the discussion in the whole of R? requires
more care about the decay at infinity). I shall write Ny = {0,1,2,...}.
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PROPOSITION 3.16. Let f : T¢ — R be a smooth function. Then
the following three properties are equivalent:

(a) f is analytic;

|

(b) 3N, C > 0; Yz € T¢, Wn e N, |f0) ()| < O%

(c) AN, C > 0: Vk € Z4, |f(k)| < C e 2K,

PrROOF OF PROPOSITION 3.16. I shall treat the case d = 1 and
leave the general case as an exercise.

(a) = (b): The convergence of the series > f™(xo) (x — z0)"/n!
in the ball B(zg,7) implies |f™ (z)|/n! < C/r™ for any r < ro. In
particular for |z — x¢| < eg/r,

[f@)<C <f<"> (r0) + 3 FH () = 0 _k!%)k)

k>0
n! (n+ k)
< _
=C (r” +§ k! c )

1 1
<Cnl =4 ——
<cu (5 g

where C' may change from line to line. So the estimate remains true for
T near xy. Since xg was arbitrary, by compactness there is a uniform
r > 0 such that | (z)] < Cnl/r".

(b) = (a) is obvious.
(b) = (c): If £ € Ny, then by repeated integration by parts

e—2mrk~y

k) = / fly) e ™ dy = / ) @iy W

SO p

Let us choose ¢ to be the integer closest to 2w \|k|; for ¢ large, ¢ <
(14 ¢)2mA|k|, then

" 14 B L
|f(B)] <C(1 +e)eﬁ <OVI(1+e) et < Cem=dlk
where ¢ is arbitrarily small and C may change from line to line.

(¢) = (b): Pick up A9 < A, then from
@) = 3 Flk) e (i
k
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and (c) one finds

[f (@) < C Y e 2nk])”
k

n! —27 Ak (2m Aol k)"

n!
<= § 6—27r>\\k| 627r)\0|k\

0k
<C QL Z o2 (A=) K|
C n!

< .
= 21(A— Xo) A2
0

Proposition 3.16 suggests two simple families of norms for analytic
functions T¢ — R, depending on a parameter \:
XL oo

1f]lx = sup ==
n>0 n:

and R
[l = sup (|F(R)] ).
k

In both cases, A can be interpreted as a radius of convergence; these
norms are equivalent up to an arbitrarily small loss in A. Moreover,
these formulas can be adapted to various contexts.

The discussion can also be extended to Gevrey regularity, depend-
ing on a parameter v > 1; Gevrey regularity can be defined either by
the property f™ = O(C"n!"), or by the property |f(/€)| = O(e‘C“‘"l/u),
and these definitions are equivalent up to constants.

Bibliographical notes

Landau [59] solved the linearized Landau equation by using the
separation of modes and the Fourier—Laplace transform. His treatment,
based on the inversion of the Laplace transform, has been reproduced
in countably many sources [1, 8, 15, 30, 45, 57, 65, 73, 93]. The
rigorous justification is somewhat tricky because inverting a Laplace
transform is not such a simple matter and involves integration over
a complex contour, which has to be chosen properly; in fact Vlasov
had it wrong in this respect, and Landau was the first to identify this
subtlety. The first completely rigorous treatment is due to Backus [8],
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who checked carefully the invertibility of the Laplace transform of the
solution. Around the same time Penrose [86] proposed an alternative
reasoning based on the general theory of the Laplace transform, and
more importantly turned the intricate criterion (3.24) into the more
effective condition from Section 3.4.

The presentation adopted in Lemma 3.5 is centered on Fourier
transform rather than Laplace transform; both are of course in the
end equivalent, but focusing on Fourier transform has the advantage
to only use the simpler Fourier inversion rather than the subtler Laplace
inversion. Lemma 3.5 does not try to reconstruct the whole solution,
but only to estimate it; this will be sufficient for the study of Lan-
dau damping and decay rates. The proof shows that the quantitative
estimate (3.16) is very elementary (something which is useful for the
extension to the nonlinear situation), and that in the end all the tricki-
ness relies in showing that the transform is well defined. The systematic
use of Fourier transform was introduced in [78], following a suggestion
by Sigal. (Note: in [78] the condition (ii) was mistakenly stated for
0 < Re& < A rather than —oo < Re& < A, however with no conse-
quences on the results since the correct version of Penrose’s criterion
was used there).

An alternative solution consists in expressing the solution as a com-
bination of generalized eigenfunctions, called Van Kampen modes
(23, 65, 103]. This reduces the stability analysis to the study of a
dispersion equation, but this is even more complicated to justify.

Morrison [75] formalized the complete integrability property of the
system, thanks to the so-called R-transform, which is related to the
Laplace inversion.

Counterexamples by Glassey and Scheffer, showing that there is no
Landau damping in the whole space for the linearized Vlasov—Poisson
equation, can be found in [38, 39]. Estimates of the decay rate at
small wavelengths (large length scales) are performed in [59] or [65,
Section 32].

In 1960 Penrose [86] suggested that the violation of the criterion
(3.33) would lead to instability. In particular, he argued that if the
distribution function has a secondary bump (is nonmonotone) then the
distribution is linearly unstable at large enough scales. Conversely, the
Penrose criterion implies stability under small-scale perturbations. Lin
and Zeng [63] have shown that instability can arise when the Penrose
criterion is violated. (Note however that for a fixed box size, (3.32)
may hold true even if (3.33) is violated.) Example 3.13 is taken from
(65, Problem, Section 30| (in dimension d = 3).



BIBLIOGRAPHICAL NOTES 57

The interpretation of the Jeans instability can be found in [15]; it
does not work quantitatively so well to predict the typical galaxy diam-
eter, because galaxies are not really a continuum of stars. In a phase
diagram for galaxies, the Jeans length is a “spinodal” (metastability)
point, which only gives an upper bound for the phase transition regime
[98].

The scattering approach to Landau damping was considered by
Caglioti and Maffei [22], and amplified in my work with Mouhot [78].
A self-contained treatment of the linearized Vlasov—Poisson equation
can be found in Section 3 of the latter work. Wave transforms and
scattering transforms are defined and studied in [31].

Ryutov [92] mentions that interpretations of the Landau damping
phenomenon were still regularly appearing fifty years after the discov-
ery of this effect. The wave-particle interpretation is surveyed, some-
times critically, in the works of Elkens and Escande [34, 35, 36]

Belmont [12] noticed that the damping rate in the linearized equa-
tion depends not only on the Landau stability condition, but also on
the regularity of f°, so that “for special distribution functions” the
Landau damping rate does not govern the damping of the force.






CHAPTER 4

Nonlinear Landau damping

The damping phenomenon discovered by Landau, and considered
in the previous chapter, is based on the study of the linearized Vlasov
equation. But the physical model, of course, is the nonlinear equation,
so the question naturally arises whether damping still holds for that
model, at least in the perturbative regime, that is, near a spatially
homogeneous equilibrium.

4.1. Basic concerns

If f; = f° +eh, so that the size of the initial perturbation is |||,
then the nonlinear equation is

oh
(4.1) E%—v-VJH—F[h]-VUfOJreF[h]-Vvh:O,
while the linearized equation is
oh
(4.2) E+v-vxh+F[h] -V, f=0.

Thus the long-time analysis of the linearized equation consists in
performing first the limit ¢ — 0, then the limit ¢ — oco. But the phys-
ically relevant question is the opposite: look at the long-time behavior
t — oo for the nonlinear equation, and then wonder about the limit
¢ — 0. There is no a priori reason why these two limits could be ex-
changed, and this casts doubts on the relevance of the long-time analy-
sis of the linearized equation. In large time, small cumulated nonlinear
effects might lead to significant departure from the linearized equation.

Moreover, the physics underlying the linear and nonlinear equa-
tions may be completely different. This is apparent for instance in the
analysis of conservation laws: the conservation of total energy for the
nonlinear equation is lost in the linearization, and only remains the
conservation of kinetic energy. Even more striking, the conservation
of all nonlinear integrals [[ C(f)dxdv is replaced, in the linearized
setting, by the conservation of all position-averages f h(z,v)dz. The
constraints being different, we may expect the long-time behavior to
be radically different also.

59
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If we look at the linearization process with the eyes of an analyst,
another concern arises: the term ¢ F'[h] - V,h in (4.1) is of dominant
order as far as velocity derivatives are concerned. In general, cutting
dominant order terms in partial differential equations may have a dev-
astating effect, which is a further reason to be doubtful.

4.2. Backus’s objection

In 1960 Backus performed the first truly rigorous study of the lin-
earized analysis of the Landau damping, and at the same time con-
sidered the relevance of the linearization. He noted that the approxi-
mation leading from (4.1) to (4.2) is natural if € V,,h can be neglected
in front of V,f° in some sense. While this may seem a harmful as-
sumption in view of the small coefficient ¢, it is in fact totally unlikely
to remain true after a time O(1/e), since it is violated even for the
linearized problem. Indeed, because of oscillations of the distribution
function, V,h will typically become unbounded (unless we use a weak
norm, but we are in a context where smoothness matters much).

To see this gradient growth, let us consider just the simpler free
transport: if O;h + v -V, h = 0, then

Voh(t,k,n) = 2imn h(t,k,n) = 2imn hi(k,n + kt).
Then, even if €h; is of size € < 1, the choice n ~ —kt shows that
£ sup ‘%(t,k,n)‘ > const. | k|t
7

as t — 400, and a similar bound holds for ¢ ||V h||L1(gzan)- As a
consequence, if we wait long enough (¢ > 1/¢), there will necessarily
come a time when the linearization postulate is no longer satisfied!

Of course, F[h] - V,h might still decay in time, because we expect
F[h] to decay exponentially fast, and V,h to grow only linearly. But
then, the linear term F'[h]-V,f° should be even “more negligible”, and
it is unclear why we should care less about the nonlinear term than
about the linear one... although the latter played a key role in the
analysis of the linearized stability.

4.3. Nonlinear time scale

While Backus’s objection provides an upper bound on the time up
to which our reasoning might be correct, it does not say that nonlinear
effects will eventually occur in large time, just that a naive approach
to linearization is not convincing.

We may now ask if there is a time scale which is naturally asso-
ciated with the nonlinear effects. To make a guess, let us look for a
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scale invariance of the Vlasov equation, as when one tries to evaluate,
by dimensional analysis, time scales associated with various kinds of
equations.

So let us assume that f = 1+ h solves the Vlasov equation (forget
the fact that f has infinite mass), and set

fo(t,z,0) =1+ h(e, x,e%),

where v and 6 are unknown parameters. (We cannot rescale in x since
we work with periodic boundary conditions.) Note that f. — 1 is of size
e in L' norm, and [(f. —1)dv = O(g); this normalization is natural
since it is through the velocity average that the kinetic distribution
acts on itself. Then

(9th +ov- v$f6 + F[fé] ’ v”f5
_ cltay [69 Oih+ 7" (v V,h) + RER% (F - Vvh)} (59 t,x,e"v),

so f. solves the Vlasov equation if 0 = —v =1+v,ie. § =1/2 = —v.
In other words,

(4.3) flt,z,v)=1+e"%h (\/gt, z, %)

also solves the Vlasov equation. This suggests the typical nonlinear
time scale O(1/4/¢), where ¢ is the size of the perturbation.

This O(1/4/2) time scale is actually well-known in physics, and
often called the O’Neil time scale: after this time scale, the nonlinear
effects should be taken into account. (They may not necessarily change
the qualitative long-time behavior, but they cannot be neglected.) This
seems to be well satisfied in numerical experiments. The problem arises
not only for the study of the Landau damping, but also already for the
a priori simpler stability problem.

4.4. Elusive bounds

The study of the linearized Vlasov equation d;h + v - V,h + F[h] -
V., fY = 0 showed that the expected decay rate depends (among other
things) on the smoothness of fY. In the nonlinear case we have 9, f +
v-Vof + F[f]-V,f =0, so the uniformly smooth background f°(v)
is replaced by the time-dependent distribution f(¢,z,v). The point
which may cause much worry is that even if f(¢, -) is analytic, there
is no hope that it satisfies smoothness estimates which are uniform in
time: fast oscillations in the velocity variable, a phenomenon which is
also known as filamentation in phase space, will imply the blow-up
of all regularity bounds of f in large time.
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Then how can one hope to adapt the tools on which the linearized
study was based??

4.5. Numerical simulations

Numerical simulations about the large-time behavior of the non-
linear Vlasov—Poisson equation are nonconclusive because of the diffi-
culties in getting reliable simulations on very large times. If ¢ is the
size of the perturbation, nonlinear effects start to appear at time scale
O(1/+/¢), and then tiny numerical errors cumulated over very large
times can be dreadful.

To summarize the situation, one can say that

e for a slight perturbation of the equilibrium, numerical schemes
do display the Landau damping phenomenon for large times, and some
of them continue to display damping at very large times, while other
ones present tiny bumps of the electric field, which sometimes do not
vanish as t — oo;

e for a larger perturbation of the equilibrium, numerical schemes
agree that damping may be replaced by a much more complicated
behavior, leading to a persistent electric field. Some authors claim
to observe BGK waves in very large times, while others remain more
cautious.

Francis Filbet kindly accepted to do a few accurate simulations
for me in the perturbative regime, with different methods; they led
to different results, but the one that was supposed to be the most ac
displayed damping at spectacular precision (more than 20 orders of
magnitude for the amplitude of the electric field, and at times so large
that the nonlinear effects can definitely not be neglected; see Figures
4.1 and 4.2).

4.6. Theorem

Some of the previous questions are solved by the following theorem
by Mouhot and myself. If n is a multi-integer and f a function I shall
write f =V f =09 ... 9 f.

THEOREM 4.1. Let f¥ = f%(v) be an analytic profile satisfying the
Penrose linear stability condition. Further assume that the interaction
potential W satisfies

(4.4) W(k)=0 (#) .

Then one has nonlinear stability and nonlinear damping close to f°.
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FiGUurE 4.1. Large time behavior of the logarithm of
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accurate. The interaction is gravitational, the initial da-
tum is a Gaussian multiplied by 1 + ¢ cos(27kz).
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FiGURE 4.2. With the more accurate method from Fig-
ure 4.1, a plot of log(||Exi||/||EL]]), the logarithmic ratio
of the norm of the nonlinear electric field to the norm of
the linearized electric field. On the left the time-scale is
1, on the right the time scale is 1/4/2. Here we see that
we arrive in a time regime where the nonlinearity can
definitely not be neglected.

More precisely, assume that (a) f° is analytic in a strip of width

Ao > 0, in the sense that

[O(n)] < Coe 2ol

)\TL
Z =2 ||v2f0||L1(dv) < Co;
n!

neNd
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(b) the initial condition f; is a perturbation of f° in a strip of width
A >0, in the sense that

FimFol (k) < & e 2nblHl =2, / il 0)—fO(0)] 27 dir do < e

for all k € Z2, n € R? and for some A\, ;> 0, 3 > 0.

(c) the generalized Penrose linear stability condition is saiisﬁed ma
strip of width A, in the sense that, if K°(t, k) = —4x> W (k) fO(kt) |k|t,
then

(4.5) 0 < Reé < Alk| = [(KO)*(&) — 1| = k> 0.

Let then f(t, -) be the unique smooth solution of the nonlinear Vlasov
equation with interaction W and initial datum f;; let us denote by
F = F[f] the associated force field. Then for any A" < min(Ag, Az, \)
there is e, = €.(Xo, Ap, A, N, i, k, Co, B) such that if € < e, then

|E(t, )] = O(e 6_2”)‘/t) as t — 400,

and p(t,x) converges (strongly and exponentially fast) to the average

Poo = [ filz,v)dz dv.
Moreover,

t—=+o0
f(t7 ) A — f:I:OO7
where fioo = fioo(v) is an analytic homogeneous equilibrium; and

t—+oo
<f(t> ' )) 7 fiom
strongly

where ( - ) stands for the x-average.

REMARKS 4.2. Here is a long series of remarks:

1. The condition /W(k) = O(1/|k|?) seems critical, and only appears
in the study of the nonlinear problem. It would somehow be easier
to handle a decrease like O(1/|k|?*°); this may be a coincidence or
some deep thing. The same amount of singularity is critical in the
classical proofs of existence for the Vlasov—Poisson equation, because
they work with just L estimates for the density, which implies by
Poisson coupling a (critical) log Lipschitz condition on the force field.

2. The analytic norm used for f; — f° is the most naive norm
controlling exponential localization in Fourier space and in physical
space. Also the smallness restriction on the size of ¢ is natural. So
there is not much to complain about in the assumptions of the theorem,
if one accepts to work in analytic regularity and periodic boundary
conditions.
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3. The decay of the force field is the damping phenomenon; the
existence of limit distributions f,., and f_., is a bonus. These distri-
butions are not determined by variational principles (at least, not that
[ know). When f,. = f_o (as in the case of the linearized Vlasov
equation), one may call the solution homoclinic. One can show that
in general f,., # f_o, in which case the solution may be called hete-
roclinic.

4. Tt is striking to see that a whole neighborhood of a stable equi-
librium f° is filled by homoclinic/heteroclinic trajectories. This is not
predicted by the (random) quasilinear theory of the Vlasov—Poisson
equation, neither by the statistical theory: there is in fact no random-
ness in Theorem 4.1. This abundance of homoclinic/heteroclinic orbits
is possible only because, thanks to the infinite dimension, one can play
with the various topologies. The fact that the conditions for damping
are expressed in terms of the initial condition alone is a considerable
improvement of previous results in the field.

5. The proof provides a constructive approach of the long-time
behavior of f, which makes it possible to exchange the limits ¢ — 0
and t — oo, perform asymptotic expansions, etc. In particular, one
can check that the asymptotic state f,. “keeps the memory” of the
initial datum, in a way that goes beyond the invariants of motion. The
mere existence of heteroclinic trajectories demonstrates this, since the
invariants (energy, nonlinear integrals) do not distinguish between the
two directions of time. At first sight this confirms an objection raised
by Isichenko in 1966 against the statistical theory of the nonlinear
Vlasov equation. However, on second thoughts, the statistical theory
can counterattack, because of the high regularity which is involved in
the result. Theorem 4.1 is based on an analytic regularity; even if
this is later relaxed in a Sobolev or even C" regularity, these classes of
regularity are probably negligible in a statistical context, where typical
distributions are probably not smooth.

6. Implicit in Theorem 4.1 is a nontrivial perturbative large-time
existence result, which in dimension 3 is covered neither by the Lions—
Perthame theory (because this is a periodic setting) nor by the Pfaffelmoser—
Batt—Rein theory (because the analyticity assumption is not compati-
ble with a compact support). It does fall within the range of the Horst
theory; however, that theory only applies up to dimension 3 for Pois-
son interaction, while our result applies in any dimension. It should be
noted that there is no contradiction with known blow-up results in di-
mension 4, because the latter assume that the total energy is negative
(and that the problem is set in the whole space), while our assumptions
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of weak inhomogeneity automatically imply that the energy is positive.
(Nobody knows if there is a simple criterion such as positivity of energy
to guarantee global existence in any dimension.)

7. An important corollary of the theorem is the orbital stability in
a strong sense: if H}  stands for the L*-Sobolev space of order s on
T2 x R%, then under the assumptions of Theorem 4.1, for any s > 0 we
have
(46) |ftz+ot0) = r@)|, =06,
uniformly as ¢ — +o00. Since L*(dz dv) is invariant under the action of
free transport, the norms in (4.6) control || f(t, ) — f°|| s2(gax7e). Using
moment bounds and Sobolev injections, one may also control f — f° in
L? norms, for all p > 1.

While such an LP stability is much weaker than Landau damping,
nobody knows how to establish it without going to the full statement of
Landau damping, or without using regularity bounds — except in the
case of a monotone distribution for Coulomb interaction, which can
be handled without regularity by much simpler Lyapunov functional
techniques.

8. The critical regularity to which the proof applies is the Gevrey
class G¥, for any v < 3 in the favorable case when [ |K (¢, k)|dt < 1;
this applies for instance for gravitational interaction below the Jeans
length. More generally, if the interaction satisfies |W (k)| = O(1/|k|*™)
and [ |K(t, k)| dt < 1 then the critical regularity exponent for the proof
to work is v = v+ 2. Here is a precise statement where we do not care
about the critical exponent:

THEOREM 4.3 (Nonlinear Landau damping in Gevrey regularity).

Let W : T* — R be an interaction potential such that |/T/I7(k)\ =
O(1/]k|?). Let f° = f°(v) be an analytic profile such that

~ —on )\n "
‘fo(n)‘ < Coe ? )\OM? Z;? HVUfOHLl(dU) < 007

n

for some Ao > 0, and salisfying the Penrose stability condition with
Landau width A\, > 0. Then there is § > 0 such that for any v €
(1,1+0), >0, a <1/v, there is e, > 0 such that if

e = sup(|(fi= )k, m)| M1 M) / | fiz, )= (0)] " dv d
k.n

satisfies € < €., then there is ¢ > 0 such that the solution f = f(t,x,v)
of the nonlinear Vlasov equation with interaction W and initial datum
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fi satisfies
Flfl(t, ) =0(ce™),

and f(t, -) converges weakly to some asymptotic Gevrey profile fioo =
J1oo(v) as t — +oo, with convergence rate O(e e=").

4.7. The information cascade

How can one reconcile the reversibility of the nonlinear Vlasov equa-
tion and the convergence in large time? Convergence seems to be about
loss of information, which should go with an increase of entropy; but
we have seen that the Vlasov equation preserves the entropy. So what?

The solution to this apparent paradox (well understood by some
physicists at least fifty years ago, but still mysterious to many others,
even today) is that all the information goes away to high frequencies,
where it is hidden, becoming wnaccessible. The following numerical
simulations will illustrate this.
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FIGURE 4.3. A plot of (f — f°)(¢, x,v) for some fixed z,
as a function of v, at two different times ¢. The interac-
tion is gravitational. Notice the fast oscillations of the
distribution function, which are very difficult to capture
by an experiment.

In fact, the cascade of energy, already present in the free transport
evolution, still holds: energy (or information) flows from low to high
frequencies. The complete integrability has been lost, but the energy
transfer still holds. This is similar in spirit to the KAM phenomenon
(KAM = Kolmogorov—Arnold-Moser), to which I shall come back later;
for the moment let me just mention that there are common points and
differences with the KAM theory.
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FIGURE 4.4. Time-evolution of the norm of the field, for
electrostatic (on the left) and gravitational (on the right)
interactions. In the electrostatic case, the fast time-
oscillations are called Langmuir oscillations, and should
not be mistaken with the velocity oscillations.

To go back to the information, let us note that

//flogfz/plogwr//flog%,

and the first term on the right-hand side converges to 0 because p
strongly converges to a constant. So all the information becomes “ki-
netic” in the limit. (Due to the oscillations, a priori we cannot pass to
the limit; but that becomes possible if we go along trajectories of the
free transport and use the gliding regularity.)

A final remark is in order: because of the time-reversibility, any
stability result, read backwards in time, should imply an instability
result. This is true, however with a catch on the topologies involved.
Landau damping asserts convergence in large time in the weak topol-
ogy, when the initial datum is perturbed in the strong topology. Read-
ing it backwards implies a instability in the strong topology, when the
initial datum is perturbed in the weak topology. In particular, Landau
damping is by no means in contradiction with the time-reversibility.

4.8. Scheme for attack

Suppose we want to solve the nonlinear Vlasov equation by an iter-
ative scheme. The most intuitive idea is to consider that particles are
driven by the field created by the other particles, so each approxima-
tion f" of the density generates a force field, which is used to drive the
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next approximation fm!:
a fn-i—l

ot
While this natural quasilinear scheme makes perfect sense for the
short-time analysis, it is poorly adapted to the long-time study. Indeed,
recall that at the linear level, the damping comes from f being viewed as

the driving force (the term F'[h] in (3.4)), not as the driven distribution.
So the next attempt would be to write
a fn-i—l
ot
The problem with this is that a higher order term V,f™ has been
treated in a fully explicit way, as if it were a perturbation; in particular,
a deterioration of the short-time regularity is to be expected.
A more promising approach is as follows. Let us linearize the Vlasov

equation around some solution f(¢,z,v), not necessarily stationary: if
h is the first order variation, it satisfies

% v -Voh+ F[f] - Voh = —F[h] - V., f.

Good estimates on the solution to this linearized equation would sug-
gest the possibility to perturbatively estimate the nonlinear Vlasov
equation. To get cleanly rid of the higher order term V,h, let us use
the method of characteristics: if (X, ¢(z,v),V,+(z,v)) stands for the
position at time ¢ in phase space of a particle which is in state (z,v)
at time 7, then

d

y h(t, Xoa(,v), Vo, v)) = —(F[h]- V7) <t, Xoa(z,), Vou(z, v)).

So

- vxfn—l—l + F[fn] X van—i—l —0.

+ v Vo ff 4 FIf" -V, f" = 0.

(4.7) h(t,z,0) = h(O,Xw(x,v), Viol(z, v))

_ /O t( Flh] - V.,7) <¢, X0 (2,0), Vir (2, v)) dr.

The representation (4.7) naturally splits the problem into two parts:
e estimate the characteristics;
e estimate the reaction equation (4.7) along characteristics.

One main driving idea is the following: if characteristics are close
to free transport trajectories, then the reaction equation will produce
an asymptotically vanishing force field, which in turn implies that tra-
jectories are close to free transport. The goal is to make quantitative
sense of this intuition and turn it into a “positive” loop. A first step is
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to find adapted norms, a problem which will be considered in the next
section.

Bibliographical notes

Backus [8] was certainly the first one to point out the conceptual
problem caused by the interversion of the asymptotic regimes t — oo
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does not mean that the qualitative behavior of these solutions differ
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nineties, when precise methods started to be available [71, 110]. Since
then, more efficient schemes have become available [46]. All pictures
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convergence can occur, as demonstrated in [22] and in the present pa-
per. Isichenko’s paper is still worth reading for his interesting insights,
though.

Nonlinear stability of monotone homogeneous profiles for the elec-
trostatic Vlasov—Poisson equation was studied by Rein [90]. The two-
stream instability has been established by Guo and Strauss for large
bumps [43]. For nonmonotone distributions with small bumps, when
the Penrose stability criterion is satisfied, the nonlinear stability is
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much trickier and it was suggested in [48] that it could fail; Theorem
4.1 shows that this is not the case, at least in analytic regularity.

Caglioti and Maffei [22] were the first to construct some exponen-
tially damped solutions to the Vlasov—Poisson equation (in dimen-
sion 1); they also noted that this implies, by time-reversibility, the
instability in the weak topology. Another construction to damped so-
lutions was performed by Hwang and Velazquez [53].

Theorem 4.1 is taken from [78], as well as the comments made
right after its statement. The discussion in Section 4.8 follows the
same source.






CHAPTER 5
Gliding analytic regularity

Analytic regularity may seem very specific, but it is for sure the
first setting to understand in the study of Landau damping, for phys-
ical reasons (because it is associated to exponential damping) and for
historical reasons as well (because this is the case that was treated by
Landau and all those following his steps). But the obstacles related
to the study of the limit ¢ — oo require much care in the choice of
functional space.

5.1. Preliminary analysis

There are many families of analytic norms for kinetic distributions
f(x,v). A particularly simple family is defined by the formula

(5.1) | £l = sup }J?(kaﬁ)‘ 2mnlkl 2mAn|
k.n

As in the last Appendix of Chapter 3 (Section 3.8) one can interpret A
and p as a width of analyticity strip in the v and x variables, respec-
tively.

To evaluate the relevance of these functional spaces, let us first see
how they behave under the transport equation

(5‘2) 8t]m+1 L. vxfn—l—l + F[fn] X van—i—l — O,

which amounts to let particles evolve at stage n + 1 in the force field
created by the distribution at stage n (as in Section 4.8). By the
method of characteristics,

U 20) = fi( X, 0), V(e 0)),

where (X7(z,v), V/y(x,v)) is the initial state of particles evolving in
the force field induced by f™, which at time t will be in state (z,v).
Thus one is naturally led to study the behavior of norms with respect
to composition. But these norms do behave very badly: to fix ideas, let
us assume that Si(x,v) satisfies “perfect” estimates, as good as (say)

73
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~(k n
f(m)

— 92 S]?p }J’vv(]@ 77)} 2 2u)[k| 2 (20)[n]
’17

21d; and observe that

[ fo21d), , =27 sup o2rilk] L2mAln|

)T

= 27| fll2a 20

In other words, the norms || - ||x, are not stable under composition by
smooth diffeomorphisms, in sharp contrast with Sobolev or C" norms.
Now imagine the disaster: each time one iterates the estimates, one
loses a factor 2 on the width of the analyticity strip, so that there is
nothing left in the end...

How does our norm behave in the alternative scheme

Of" 40 Vo f T FIfMT] VL7 =0,
also considered in Section 4.87 First, it seems important to record the
fact that this scheme loses a derivative, and the norms || - ||5, do not
perform this naturally.
Then, because of filamentation, the best one can hope for f is an

estimate in the style of the solution of free transport g(k,n + kt): in
the best of worlds,

’f(u k, 77)} < 06727r)\|n+kt| 6727r,u\k|‘

But then | f|[x, ~ €*™ (choose n = —kt, |k| = 1); and even worse,
1 £llx, € MHE for any k such that the mode k does not vanish. If
all modes k are represented, one expects the norm of f to grow faster
than any exponential! This of course is a disaster for the large-time
analysis.

5.2. Algebra norms

Among all families of analytic norms, two deserve a special mention;
let us present them in dimension 1:

~ A\
(53)  flle =DM F®R) (1 fller = HHJC(H)HLOO:

kEZ neNg

where f(™ stands for the derivative of order n of f, and Ny = {0,1,2,...}.
The first norm (as it is written) makes sense only for periodic functions,
while the second one makes sense for any smooth function on R.

PROPOSITION 5.1. With || - ||x standing either for the F* or the C*
norm, one has

[Fgllx < [1FlIx llgll-
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SKETCH OF PROOF. Let us prove the inequality for, say, the C*
norm: the Leibniz differentiation formula implies

)\n
50 S I e € 3030 A et i

n n m<n

)\mm

—Z el L I Pl P

Am am
= (Zm”f( >Hm> (Z il >um>.

O

As an immediate corollary, we have || f*||x < || f]|3. This remarkable
algebra property implies good properties with respect to composition
as well: there will be a loss of exponent (that is unavoidable), but it
will be controlled.

PROPOSITION 5.2. With || - ||x standing either for the F* or the C*
norm, one has

|foma+a) <ifl.  v=r+]Cl

Note carefully: the constant in front of the right-hand side is equal
to 1; and the size of G (in the A-norm) is found in the regularity index
on the right-hand side.

PROOF OF PROPOSITION 5.2. Let us do it for the C* norm. Writ-
ing h = fo(Id + G), in the sense of formal series we have

(n)
> e,
whence

S @) (6O ),

k+l=m n
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SO
Am m n
> Sl <32 3 S A (67O
m k+f=m n
)\k;—l—é (nth) ®
—Ejmﬂmuf" e (GO
Z [ [F ) o
<> Z 1G5
r k+n=r
(A + HGH
< Z ) (AR
- ||f“>\+||G||A7
where Newton’s binomial formula was used. O

Proposition 5.2 admits some variants: in particular, it is possible
to mix norms:

G4)  |fema+a)|, <lfls  v=A+1Glo

where the C* seminorm is obtained from the C* norm by throwing away
the zero mode. (The proof of (5.4) is a consequence of the dreaded Faa
di Bruno formula and will be a pleasant exercise for the reader.)

Working in kinetic theory, it is particularly convenient to hybridize
the two spaces: apply the recipe C to the velocity space and the recipe
F to the position space. (Note in particular that for the regularity of
characteristics there is hardly any choice: since these are unbounded
functions of v, it would anyway be very tricky to apply them a Fourier-
based method.)

With this “hybrid” choice, the recipe F will take advantage of the
periodic geometry of the position space, and property (5.4) will guar-
antee that composition by the characteristics is still properly handled.
Let us also generalize to d dimensions, add a parameter v to count
derivatives (for technical reasons, this is needed only in the z variable),
and another parameter p to modulate the integrability; we are led to
the formula

(55) Hf”z%(uw)m = Z Z 627W|k‘ 1+ |k| | anf k v HLP (dv)’

kezd nEN(d)
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where J/‘\(k, v) = [ f(z,v) e %™ dz is the Fourier transform of f in the
x variable only. Then we have good properties generalizing Property
5.1 such as

1 1
||fg||gk,(uw);p < ||f“2/\,(u,w);q Hg”gk,(uw);m ; = 5 + —.

5.3. Gliding regularity

Now it remains to take into account filamentation, that is, the ap-
pearance of fast oscillations in the velocity variable. Since we cannot
avoid it, let us accept it and incorporate it in the norm. This amounts
to introducing a parameter 7 (time-like) and to define

Ifllz. = [1f o S22,

where the regularity indices are implicit, and S?(z,v) = (z + vt,v) is
the flow associated with free transport. (So f; 0 SY_is the backward
solution of free transport.)

This provides a family of functional spaces depending on a param-
eter 7, which can a priori be chosen as one wishes, the idea being that
T is equal to, or at least asymptotic to, the time of the equation. Thus
we adapt our regularity scale to the filamentation; or, we focus on the
relevant Fourier modes as time goes by.

All in all, we are led to the final definition of the Z norms: for a
function f = f(z,v),

(56) Hf”zjy(uw);p

=37 ST @k (14 [k % | (70 + 2imrk)" F(, o)

kezd neNd

LP(dv) ‘

By default, 7 =0, v =0 and p = oc.

REMARKS 5.3. Here are some important remarks about the Z
norms.
1. If f = f(t,z,v) is a solution of the free transport equation, then

1t )z = 1£(0, )l
(the regularity indices being implicit).
2. If f = f(v), then the [|f|| ;».m norm reduces to the C* norm.
3. If f = f(x), then the | f[| ;»w~ norm reduces to the F” norm

with v = (AT +p, ) (that is, the FA™# space with v additional deriva-
tives). The crucial point is that the regularity in = improves with ¢, as
it should be in view of our discussion at the end of Chapter 3.
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4. As a final remark, we shall almost never try to compare norms
Z. for various values of 7, because this is very costly in the velocity
regularity: we don’t have anything better than

HfHZ;\;” < HfHZTA,u-M\T—T/\,

and this becomes unaffordable as soon as |7 — 7'| is large.

5.4. Functional analysis

Now one can study the main properties of the Z spaces, with respect
to product, composition, differentiation (the analytic regularity implies
a control of the derivative in terms of the function itself), inversion
(estimated by means of a fixed point theorem), averaging... Below are
some of the main results. In the following formulas, I do not mention
those indices which are similar on the left and right-hand sides of the
inequalities:

1 1 1
(5.7) Ifallzr < I flzo lgllzes =+
r p q

(5.8) Hf(xth(a:,v),v—irV(a:,v)))

Zhmp < Hf”zgﬂma

where @ = A + ||V s, B=p+ AT — o + [|X — o V|| zau;

C
59 19 llorn < = v
i— p
(5.10)
~ 1 1+
LAz = VSl <O (505 + 200 ) Il

(5.11) Ja=a(d)>0; [[V(F -1d)|yw <a
—= [|[F oG —1d|| pan < 2[|F = Gl 52,

where X = A+ 2[[F — Gllpyo, 4 =+ 2 (14 7)) |F = Gl sy

(5.12) H/fdv

(5.13) H/fdx

< Nl 2
FAlTl+p

< [1fllz-
cA
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A more subtle inequality, which allows to “cheat” with the time
parameter, is

(5.14) H/f(x—v(t—T),v) dv

< HfHZ/\(1+b)-,u;17
FAt+p T—%
where b > —1 and ¢ > 0 are given parameters.

All these properties will be convenient to study the nonlinear Vlasov
equation. One may complain about the complicated nature of the
norms; but it is possible to inject these norms into more standard
norms, up to an arbitrarily small loss on the regularity indices. Thus,
even if we work out the estimates in the complicated Z norms, we will

be able to state the result in the simple-minded ) norms defined by
Hnyw ‘= sup ]f(k, 77)’ o2 An+kt| 2mulk|
T k7’n
To estimate the ) norms by the Z norms, we have the simple
inequality

(5.15) [y < S 2

Conversely, to estimate the Z norms by the ) norms, we have the more
subtle inequalities

C(d, ) )
and
(5.17)

[ S
HﬂgmgﬁwwﬂwOmmﬁ+/u@wvamm)

The latter inequality holds as soon as A < A < A, u < 7 < M,
0<b<pB < B, [|fle* P dudr < E, and the constant C' only
depends on A, M, B, (3, E. The mechanism of proof is similar to the
Sobolev injections.

All inequalities in this section seem rather sharp, except for (5.17),
for which one may conjecture that the best constants in the right-hand
side of (5.17) are polynomial (instead of exponential) in 1/min(\ —

Bibliographical notes

Algebra norms similar to those in Section 5.2 are well-known in
certain circles, and appear for instance in [3]. The idea to combine
them, the resulting composition formulae, and the notion of gliding
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regularity were introduced in [78]. Detailed proofs can be found in
Section 4 of that work.

Gliding regularity is somehow reminiscent of the philosophy used by
Bourgain [19] in the definition of his X* spaces, which are defined by
comparison with some unperturbed reversible dynamics; a difference is
the role of the time variable, which in our treatment is just a parameter.

The conjecture according to which the constants in (5.17) might be
polynomial is briefly discussed in [78], and an application to the study
of the nonlinear stability in “low” regularity is sketched. The picture
is far from clear. A baby conjecture retaining the same features would
be as follows: Show that there are s, C' > 0 such that for any integers
r < k and any function f: R — R,

Ifller < Ce I fllgo” 1fIEn,  e=r/k.
Mironescu gave me a proof of the related interpolation inequality
1 kt1
[fllex < CE™ A NG
where any m > 1 will work; I think this provides hope for the general
case.



CHAPTER 6

Characteristics in damped forcing

Before turning to the nonlinear problem where the distribution
function determines the force, let us address the linear problem in which
the force field is given and drives the distribution function, and let us
assume on the force field the desired qualitative features. Of course,
the study of the transport equation can be reduced to the understand-
ing of particle trajectories (characteristics), so we shall focus on those
trajectories.

6.1. Damped forcing

Let be given a small gradient force field F(t,-) whose analytic reg-
ularity improves linearly in time: with the notation (5.3),

HF(t7 .>H].‘/\t - 0(5)

The question is about the qualitative behavior of trajectories; in
particular, are they transient like free transport trajectories, or can
they be trapped and go along complicated trajectories?

To get a first feeling, let us proceed to a formal asymptotic analysis.
As before, we write X ;(z,v), Vs (x,v) for respectively the position and
velocity at time ¢, starting from time s at (z,v). Writing formally

Vou(z,v) =v+evW(t,z,v) + 2ot z,0) +...,

t t
Xos(z,v)=x+vt+e¢ / v (s, z,v) ds + £ / v (s, z,0)ds + ...,
0 0
we expect F(t, Xo,(z,v)) = F(t,x + vt) + O(¢?), then the equation
X = F(t, X) leads to
t
Vou(z,v) =v+ / F(s,x +wvs)ds+ O(g?),
0

so we expect Vo i(x,v) = v+ O(e). If this is in an analytic norm taking
derivatives into account, we expect in particular

|VU‘/0,t(x7/U) - I‘ = 0(8)7
so the flow should be invertible if € is small enough.

81
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To summarize: our guess is that the trajectories remain perturba-
tions of the free flow (z + vt,v), uniformly in time.

6.2. Deflection

To compare the perturbed dynamics to the free dynamics, let us
write Sy, = (Xir, Viir), Sty = (z — (t — 7)v,v), and define the deflec-
tion operator: for 0 < 7 <,

(6.1) Qr =S, 0857,

That is, start from time 7, evolve by the free dynamics up to time ¢, and
then evolve backwards by the perturbed dynamics, back to time 7. As
t — 00, {1, converges to what is sometimes called a wave transform;
when one considers both asymptotics ¢ — +o00 and ¢ — —oo this gives
rise to scattering operators.

PROPOSITION 6.1. With the above notation, if N < A\, u’ < p and
! R YAV
< =) (A =X)

(6.2) IE1 = sap [[E'(E, - )| zren < - :
>0
where C' is large enough, then
/ 1
HQtﬂ— —1Id HZ;.\,"”, S C H|F|H 6_27r(>\_>\ )" min (t — T, m) .

Proposition 6.1 provides an analytic deflection, modulo a small loss
on the regularity index; it can be generalized (e.g. by changing 7 on the
left within some constraints), but for the moment this is quite sufficient
to give a first idea. This estimate is

(a) uniform as t — oo;

(b) small as 7 — t;

(c) exponentially small as 7 — oc.

Assuming an initial departure O(g) from equilibrium, so that F is
of order e. Condition (6.2) can be fulfilled only if max(A — X, u— ') is
at least of order £'/3. We shall discuss later (in the course of Chapter 8)
how to replace this estimate by a time-dependent loss of the regularity
parameter A\, with the loss vanishing in large time.

SKETCH OF PROOF OF PROPOSITION 6.1. The principle of the proof

is a standard fixed point reasoning. First let us make the ansatz

Str(z,0) = <x —o(t—7)+ Z (z,0), v+ 0-Zy - (x, U))
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(the second component of S;, is the 7-derivative of the first one). The
equation on 7 is

7
2 F(ra—u(t—7)+2
(6.3) 5 = F(ma ot =)+ 2,)

Zt,t =0, 87"7-:,5 Zt,T = 0.
So Z appears as a fixed point of ¥ : W —— Z, where Z is the solution
of

0?7
(6.4) or?

Zt,t =0, aT|7—:t Zt,T = 0.

=F<T,x—v(t—7)+VVt7T)

For given ¢, Z, ; is a function of 7 € [0, ¢]; the norm introduced in
(78] is a slight variation of the following:

. HZt,THZTA’xu’
= su —_—
[0,1 og% R(7,t)

_ =27 (A=N)T __: (t — T)2 1
R(r,t)=Ce mm[ 5 ()\_)\,)2] )

Then the goal is to check that (a) [[¥(0)[jy < 1 and (b) W is 1-
Lipschitz in the norm || - [[pq, on the ball of radius 2 (for the same
norm). If that is true, it follows by a classical fixed-point theorem that
U has a unique fixed point in the ball of radius 2, and this provides the
desired estimate.

Let us give a hint of how to perform these estimates. For (a), we

see that U(0) = Z° such that

ZgT:/ (s =7)F(s,z —v(t —s)) ds.

We are estimating this in Z)*' norm, so (recalling Remark 5.3(3)) this
is trivially bounded above by

¢
/ (s =) [[F'(s, )l pxmsr ds.
Since F'is a gradient, for s > 7 we have the estimate
1E(s, e < ETOTANF (s, )| prorn < 720005 R

in other words, thanks to the gradient structure of F', the gliding requ-
larity has been converted into a time decay. Now we obtain the bound

H (Zt7)o<r<t

where
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on Z° by time-integration:
t
! ! 1
—2m(A=\ —2m(A=X : 2
/(8—7_)6 m( )Sdsgce m( )Tmln (t—T),m],
i

and the desired property follows easily.
To check the Lipschitz property (b) is hardly more tricky: if Z =

(W), Z = U(W) then we have
Zyy—LZor = / (s—7) [F(s,x—v(t—s)+W> —F(s,x—v(t—s)—i—W)] ds.

To estimate this we write

F(s,x—v(t—s)—l—W)—F(s,x—v(t—s)—i—W)
:/1VIF<s,x—v(t—s)+(1—0)W+9/W)d9 (W — W),

and then use the functional analysis of the Z spaces (with respect to
product, composition, differentiation, and evolution by free transport)
to bound this. A source of loss of regularity is the composition by
something which has size 1 + O(||W||). Since ||[W|| = O(g/(A = X)?),
we can absorb this loss of regularity (due to composition) into the loss
of regularity in z, if /(A — X)? is significantly smaller than p — /, and
this explains where condition (6.2) comes from. O

Bibliographical notes

This chapter is entirely based on [78, Section 5], in which the reader
can find precise definitions and estimates.



CHAPTER 7

Reaction against an oscillating background

In the past chapter we were considering the time-evolution of an
unknown distribution evolving in a given force field, now we shall con-
sider the dual point of view: the force will be the unknown, and the
forced distribution will be given. So the equation will be

of

(7.1) o T U Vel + FI)(tx) - Vuf(tz,0) = 0.

Formally, this equation describes the evolution of a gas of particles
which tries to force the distribution f, however there is a flux (or trans-
mutation) of particles from distribution f to distribution f, compen-
sating exactly the effect of the force. Accordingly, I will informally call
(7.1) the reaction equation. We shall assume on f the same estimates
as on a typical solution of a transport equation, so in large time V, f
will oscillate fast in the velocity variable. — as in Chapter 3.

7.1. Regularity extortion

For mnemonic purpose, one may interpret (7.1) saying that one is
pushing against an oscillating wall, which at times takes energy and at
times gives it back, so that it is not clear whether at the end of the day
one gets exhausted or not. The goal of this chapter is to show that if f
is quite smooth (in gliding regularity), then the force associated with
f will gain regularity in time, eventually causing the exhaustion.

PROPOSITION 7.1. Let fO such that | fO(n)| = O(e=2ll) and f°
satisfies the generalized Penrose stability condition with stabilz’ﬁg width

AL as in Section 3.24. Assume that the interaction satisfies W (k) =
O(1/|k|)*), v > 1. Let f; = fi(z,v) such that

HfiHZle <e¢
and f(t,z,v) = fO(v) + h(t, z,v) with
Hﬁ(ta x>U)HZt/\»u:1 S 5,

where > 0 and 0 < A < min(Ao, Ar). Then there are C > 0 and
r,s > 0 such that the solution of (7.1) satisfies, for all N, u' with

85
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Wi <land1/2 < N/X <1,
1
0 e
I e <0 (14 G705
for all times t > 0.

REMARK 7.2. The assumption on the interaction potential is sat-
isfied for the Coulomb or Newton interaction with v = 1. The formu-
lation above allows to discuss the influence of v on the estimates.

The rest of this chapter is devoted to a presentation of the main
ingredients behind Proposition 7.1.
7.2. Solving the reaction equation

Exactly as in Chapter 3, let us apply the Duhamel principle, the
Fourier transform, and integrate over v: with p = [ fdv, we get

(7.2) p(t,k) = fi(k, kt)
/// VW 5 p) (1,2 = v(t = 7)) - (Vo f°) (v) €™ dw dv dr

—i—/o / (VWp) (1, 2—0(t—7))-(V,h) (7, 2—0(t—T7),v) e > da dv dr.

The first and second terms on the right-hand side are the same as in
the linearized study, and the novelty is in the last integral. Since both
p and h depend on z, and the product becomes a convolution in Fourier
space, this last integral can be rewritten as

(7.3)
t
/ / (VW % p) - V h(T, x,v) e 2k o= 2mkvt=") o dyy dr
0

t ~
= / / (VI x p)-vﬁ] (1, k,v) e~ 2™ =T) 4y dr

//Z VW 5 p) (1, k = £) - (Vo) (7, £, v) e 2™ =) dy dr

Le74

= / STVW (k=0 plr,k — ) - (Voh) (1,6, k(t — 7)) dr.
0 pezd
The difference with the linearized situation is that now there are
all the nonzero values of ¢, so that the various Fourier modes of p are
coupled to each other. To estimate the expression above, let us use the
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bound V/ﬁ/(/{—f) = O(1/]k—£|7) and the gliding regularity assumption
on h: using ) spaces for simplicity, we shall assume

\ﬁ(s, ]C, 77)‘ < C(sefQﬂX\nJrks\ 6727rﬁ|k\‘

Plug this into (7.3), take norms, multiply by e?”+#I* and sum over

k to obtain an estimate of the F# norm of the last term in (7.2) by

C(S/
0

We note that if A < X, p < Ji, then

\k ﬁ]”* ’p 7 k— g)} 2 (At+p)| k| \k\( )6727r)\|k(t77-)+[7-\ o2l g
ke

627r()\t+u) || 6727r)\\k(t77')+€7'| 6727rﬁ\[|

< e—27r(ﬁ—y)|€\ 62W(A7+u)\k—€| e—QW(X—)\)\k(t—T)-I-@ﬂ.

So (7.4) is bounded by

1 _ _
cs |k — Eh |,/0\(7_7 k— €)| 627r()\7-+#)\k7f| 6727r(u7u)|€\ 6727r()\—)\)|k(t77)+f7\ |/{Z|(
Ly,
<05/ K(t,7) Y |p(r, k — 0)] 2mOr k=t 2 =51 g
k,l

cé /t
<— | K(t, 7 T riu AT,
= (ﬁ _ ,u)d o ( ) Hp( )H]—'/\ +

where the kernel K (t,7) is defined by

k| (t — 7) e 2 (A=N)|k(t—7)+07] o—2m(EE)|¢|
7.5 K(t, 1) = .

Notice, we took advantage of the fact that A > X to get some decay in
the exponentials appearing in (7.5).
Plugging these bounds into (7.2), we conclude that

(76) Z 627r(>\t+u)|k\t ﬁ(

t
L) — / KOt — 7. k) 5(r k) dr
k 0

t
< At) +6 / V() presn K (2, 7) di,
0

where A(t) = S 2™kl | £, (k, kt)| is the contribution of the initial da-
tum.

t—7)dr
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To appreciate the effect of the new kernel K (¢,7) let us set f° =0
in (7.6); then this inequality turns into a closed inequality on ¢(t) =

oty ) lresn:

(7.7) HMMPMSA@+QAK@ﬂWWmeW

Let us analyze the expression (7.5). The decay in ¢ is good, the
decay in |k — /| is not so good (depending on the smoothness of the
interaction), and the decay in k is not good at all since |k(t — 7) + (7|
can be small even though k is very large: just choose ¢ opposite to k
and 7 = (|k|/|k — £|)t. Stated otherwise, in the time-integral there is a
resonance phenomenon occurring for

k(t—71) 4 r =0.
7.3. Analysis of the kernel K

Let us analyze the kernel appearing in (7.5). Inside the supremum
there is a good decay in |k(t — 7) + (7|, so for practical purposes one
may replace the factor |k|(t — 7), appearing in front of the exponential,
by 1+ |¢|7. (This is true also for £ = 0: if f = O(1) in gliding analytic
regularity, then in general V,f = O(t), but (V,f) = V,(f) = O(1),
where (f) is the spatial average of f.) Then it is not difficult to see that
K(t,7) is not better than O(7) and that its time-integral [ K(¢,7)dr
is not better than O(t). And this is bad news, because it suggests the
possibility of a very serious instability as ¢t — oo, with a growth like,
say, e’

But let us analyze the kernel more precisely. To get an idea of its
quantitative behavior, let us set d = 1, replace the slower power decay
|k — £]77 by the faster decay e “*~‘ keep only the dominant mode
¢ = —1 and the modes k > 0, and replace |k|(t —7) by 1+ 7. The
resulting approximation is, up to a multiplicative constant,

_ < 1
7.8 K(t,7) = sup ( 1+ 7) e 2r AN Ik(E=r) =7 7) )
78 K= sp (040 ey
Below is a numerical plot of 7 — K (¢, 7) (where the interaction factor,
for various values of ¢, after replacing the interaction factor (k+1)~7 by
the nicer e~°*; that is, the function 7 — K (¢, 7) is plotted for various
values of . A preliminary conclusion is that in the integral equation

(7.9) w@SA@+AK@ﬂwﬂw

for each t, only certain specific values of 7 seem to count (like t/2, etc.).
This may seem crazy at first, but it is exactly the same principle which
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FIGURE 7.1. The kernel K(t,7) for t = 10, t = 100,
t = 1000. The curve above is an approximate envelope
which can be computed analytically, but which provides
disastrous estimates; observe indeed that most of the
mass of the kernel K concentrates on discrete times as t
becomes large.

underlies the echo phenomenon, a beautiful experiment made in the
sixties by Malmberg and co-workers. Let me describe the experiment
and its interpretation. Prepare your favorite plasma in your favorite
lab, and at time 0 excite it by a small impulse of frequency ¢ € Z, say
¢ < 0. Wait until the electric field damps, and at time 7 > 0 excite the
plasma again by a small impulse of frequency k — ¢, with k € Z, k > 0.
Then sit and measure the electric field, analyzing the strength of the
mode k. Around time

(k=0T

k )

a spontaneous response, the echo, will be recorded.

The interpretation is the following: initially disturbed, the electric
field has damped, but the information is still there, hidden in the fast
oscillations of the distribution function in the velocity variable. Start
from a homogeneous background f°(v), apply a pulse (sharply localized
in time) oscillating at spatial frequency k, from the Vlasov equation
the variation in the density is proportional to —F(z) -V, f%(v), so right
after the pulse the density will be roughly

f(0F, 2,v) ~ fO>v) — 2iml 2™ 1 -V, fO(v),

(710) te =

where 6 is a small constant depending on the intensity and duration of
the pulse, and I use a complex notation for simplicity (only the real part
makes sense). Then the distribution evolves by damping and oscillates
more and more; since the electric field is O(6), the main contribution
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FIG. 1. Appromimute varistion of the principal Four-
ier goelllelomts of the seli-consistent tield for the cuse
By iy 4k, Upper kine: response Lo the firal polse;
middle Hne: rogponac to the sceond pulse; lower line:
echo.

FI1GURE 7.2. Representation of the plasma echo experi-
ment, from the pioneering paper by Malmberg, Wharton,
Gould, and O’Neil.

is due to free transport and we have, at time 7,
f(r,2,0) = fO(v) — 2inf X 07, fO(0) + O(62) 2,

(The last term is due to the contribution of the force derived from the
linearized Vlasov equation.)

At time 7 the new pulse is applied; the change in the density is
proportional to —F - V, f, where the force now oscillates at spatial
frequency k — £: so right after time 7 the density will be

Frt m,0) = fO(v) = 2im0 2D 07, fO(v) + O(6?) 2o 0r)
— 2iml) @O (k — 1) -V, fO(v)
+2im0 ¢’ 2t (@ mvT) 2im(k—b)-w (—zm(k—a-wﬂvz o)L, k—€>) +0(6' 6%).
Then again, we let it evolve freely and at a later time ¢ we have
ft,z,v) = fO(v) = 2im ™ 07, fO(v) + O(67) e ()
— 2inf 2 h=0-@=v =) (k). v, fO(v) + O((#)?) Xk (e—vlt=r)
+ 2 @ it e=vt) GRim(k—O)a (—in(kz —0) - lr+ (V2 FO(0) - ] — £>)
+0(6*) +0((8)%).
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(Note that the contribution of the initial pulse to the electric field is
small, so from time 7 on we can assume the field to be O(¢’). Also we
assume that ¢ and 6’ are of the same order of magnitude.)

Summarizing everything, f(¢,x,v) is mainly made of the superpo-
sition of three spatial frequencies:

e at spatial frequency £, there is a coefficient O(6) e=27()% hich
is rapidly oscillating in v (for large times) and thus does not contribute
significantly the electric field;

e at spatial frequency k—/, there is a coefficient O(') e~ 27 ((k=01)-v,
which is also rapidly oscillating in v;

e at spatial frequency k, there is a coefficient O(6 §') =2 lk(t=7)+tr]v
which does not oscillate fast in v if k(t — 7) 4+ ¢7 ~ 0. Then although
this term is second-order, it may have an important contribution to the
electric field, more than the first-order highly oscillating terms. This is
the source of the echo.

The beauty of the echo experiment is that it demonstrates that
in the Landau damping phenomenon, the information has not disap-
peared: it is still there, but hidden in the high frequency oscillations
in velocity. The interaction between the two spatial frequencies ¢ and
k — ¢ has produced a response which can be measured: a visible mani-
festation of what was meant to remain hidden.

Back to the nonlinear damping problem, here is the picture which
is starting to emerge. While in the linearized Vlasov equation, each
mode k£ was evolving independently of the other ones, in the nonlinear
Vlasov equation that is not the case: there is a coupling of all modes
by the interaction. Exciting one mode at some time has a nonnegli-
gible consequence on other modes at later times (by echoes), but this
is controlled by the integral equation, mixing estimates on all modes
together.

7.4. Analysis of the integral equation

Now let us come back to the analysis of the integral equation

(7.11) / K(t,7) (1) dr

appearing as a variant of (7.9).

From the past section, we have a bad news, namely that the kernel
grows linearly in time; and a good news, namely that it concentrates
on “resonant” times 7, which are not too close to t. The moral is the
same as can be derived from the echo experiment: the Vlasov equation
is an oscillatory system which responds with time-delay. To illustrate
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why this is a good news, let us examine a few examples of baby integral
equations.

e a kernel that is uniformly O(7):

gp(t)gA—l—c/O T () dr;

then this yields p(t) < Ae’/2, which is a disaster.

e a kernel whose integral is O(t), and which is spread over times:

o(t) < A+c/0 (1) d;

then p(t) < Ae, which is better.

e a kernel whose integral is O(t), which is concentrated at the final
time:
o(t) < A+cto(t):
this is a complete disaster, the inequality does not even prevent ¢ from
becoming infinite.

e a kernel which is O(7), whose integral is O(t), and which is
concentrated near the final time:

t
o(t) §A+ct/ (1) d;
-1

then this still allows for quick growth (how much?).

e a kernel whose integral is O(t), but whose mass concentrates far
away from t:

(7.12) o) < A+ c% ’ (g) .

Then a power series expansion suggests

At

o(t) < AZW:
n

which is basically the same as A¢ (1o t)Q; one can also guess this behavior
directly from (7.12). This is very good since this growth is subexponen-
tial (faster than any polynomial, slower than any fractional exponen-
tial). In particular, we can write p(t) < C. A€, where ¢ is arbitrarily
small and C. depends on €.

Why is this good? Recall that in our case ¢(t) is an analytic
norm whose regularity index increases exponentially fast with time,
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say ¢(t) = ||p(t)||zre+n. Then for the force F(t) we have, for N < A,

~

using as usual F'(¢,0) =0,

IF @)l gavesn < e 2O E ()| s

< Ce O | p(8) | pres
< CCEAef%r()\fX)t €6t,

and by choosing ¢ close enough we can make sure that the decay of the
force is still exponential in time.

7.5. Effect of singular interactions

In the previous disEEssion and analysis of the kernel, I have replaced
the power law decay W (k) ~ |k|~0*7) of the interaction by the expo-
nential decay e °*l which is typical of an analytic interaction. But of
course, the most interesting cases occur when W (k) only decays like a
power law, corresponding to a singularity in physical space. The most
important case of all is v = 1 (Poisson coupling). How does this singu-
larity modify the picture which we formed for an analytic interaction?

To get a feeling, and appreciate the influence of the strength of the
singularity, let us consider the baby kernels

o—olkt—(k+1)7]
K. (t,7)=(14+71) k:S}IQP iy
To appreciate the long-time behavior, let us perform a time-rescaling,
setting k.(0) = t K(t,t0) (the t factor in front is there to keep the
total mass of K invariant in the rescaling). As ¢ — oo, the exponen-
tial e~@lF=(k+1D0It hecomes localized in a neighborhood of size O(1/kt)
around 0 = k/(k + 1), and its mass becomes 2/(c(k + 1)). Thus

k 2 1 k

_t _— — Z 51_L7

t a = (k+1) (k+1)> F
where the convergence is in the weak sense on the time-interval [0, t].
This suggests the approximation

(7.13) Kyt ~ct S kllﬂ Sy

k
k>1

Examination of (7.13) shows that the lower + is, the more the echoes
accumulate near ¢; then we are getting closer to the (very bad) regime
of instantaneous response. For pedagogical purpose, one may keep in
mind the image that if one sings in a very rough church (say), the
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abundance of small echoes may blur the sound in an uncontrollable
way.

To evaluate the influence of the kernel (7.13), let us search once
again for an exact power series solution ¢(t) = > a, t" to the integral

equation
1 k—1
cp(t):A+ct§ k1+«,‘p(( ? )t)

k>1

This yields

1 1\"
ag = A, (pi1 = C [ - (1——) ] Uy,
k21k+7 k

The sum inside brackets is comparable to

o¢] 1 n
/ =) (1 - ;) dt = B(y,n+1) ~n™",
1

where B is Euler’s Beta function. So a,y1 ~ ¢n™7a,, thus a, =~
Ac™/(nl)7, and we expect

(7.14) o(t) < const. A Z c

This is subexponential for v > 1 (which is good), but exponential for
v =1!

Since 7 = 1 is the most interesting case, it is tempting to believe
that we stumbled on some deep difficulty. But this is a trap: a much
more precise estimate can be obtained by separating modes and esti-
mating them one by one, rather than seeking for an estimate on the
whole norm. Namely, if we set

prlt) = TP (e, k)|

then we have a system of the form

(7.15) or(t) < ag(t) + (].C_:if)wl k1 (kk—fl) '

Let us assume that ay(t) = O(e=% e~ 2™Ft) - First we simplify the
time-dependence by letting

Ap(t) = ag(t) 2™t By (t) = i) 2K,
Then (7.15) becomes

(7.16) Dp(t) < Ag(t) + ﬁ Pt (kk—Jfl) :
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(The exponential for the last term is right because (k+1)(kt/(k+1)) =
kt.) Now if we get a subexponential estimate on ®(t), this will imply
an exponential decay for ¢y ().

Once again, we look for a power series, assuming that A, is constant
in time, decaying like e~ as k — oo; so we make the ansatz @ (t) =
Y o G 7 With ag o = e~ As an exercice, the reader can work out
the doubly recurrent estimate on the coefficients ay,, and deduce

—ak m m e
agm < const. A (ke ") k™ ¢ (e
whence
o 1
(7.17) @, (t) < const. A 1 Va < —.
v+ 2

This is subexponential even for v = 1: in fact, we have taken advantage
of the fact that echoes at different values of k are asymptotically rather
well separated in time.

As a conclusion, as an effect of the singularity of the interaction, we
expect to lose a fractional exponential on the convergence rate: if the
mode & of the source decays like e 2™¥I¢ then ¢y, the mode k of the
solution, should decay like e=2 kIt e(clkD* “More generally, if the mode
k decays like A(kt), one expects that oy (t) decays like A(kt) elclFt)®,
Then we conclude as before by absorbing the fractional exponential in
a very slow exponential, at the price of a very large constant: say

e < exp(cfﬁ) et
7.6. Large time estimates via exponential moments

So far we have mainly done heuristics and power expansions, now
arises the question of rigorously estimating solutions of integral equa-
tions. Let us leave apart the more tricky case when the modes are
decoupled, and focus on the single case when there is just one equa-
tion, like (7.7).

So let ¢(t) > 0 solve

p(t) <A +/O K(t,7)o(T)dr,

where K (t,7) is given by (7.5). To estimate ¢ in an exponential scale,
we shall consider exponential moments of the kernel. The main idea is
that

¢
(7.18) / e ' K (t,7) e dr
0

will be smaller if K favors large values of t — 7.
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It can be shown by elementary means that for ¢ > 1,

t
—et ET
(7.19) /o e K(t,T)eTTdr < e
for some constants C' > 0, r > 0. The important fact is that the bound
on the right-hand side of (7.19) decays as t — oc.
Let us see how to exploit this information. Let () = Be. If 4
satisfies

o(t) < P(t) for 0<t<T
w(t)zA“‘/tK(t,T)w(T)dT fort > T,
0

then u := 9 — ¢ is positive for ¢ > T, and satisfies the inequality
u(t) > fot K(t,7)u(r)dr for t > T, so u will never vanish and always
remain positive — this is a maximum principle argument.

For small values of ¢, that is, 0 < t < T, a crude bound, in Gronwall
style, is easy: it may give a very bad constant like e” or so, but that
remains a finite constant, whatever the choice of T

For large values of t, that is t > T, we just have to check that

¢
A+B/ K(t,7) e dr < Be .
0

But from (7.19), the left-hand side is bounded above by
BC et

grgr—1’

and this is obviously bounded above by B e as soon as B > A/2 and
t > (2BC/")Y0=Y which in turn holds as soon as 7T is chosen large
enough.

The estimate can be refined in many ways. Instead of exponential
moments, one can consider fractional exponential moments

/eStQK(t,T) e,

which gives much better results as far as the dependence on ¢ is con-
cerned.

Also, there is a variant which covers the case when the kernel is used
as a source term in the linearized Vlasov equation with a nontrivial f°,
as in (7.6). This argument is more tricky and goes not only through a
maximum principle but also through L? estimates (as in Lemma 3.5)
and an inequality of Young type. To work this out, one establishes
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decay estimates not only on L' exponential moments as (7.18), but
also decay estimates on L? moments

1/2
(/ e K (t, ) e*T dT) ,

and uniform bounds on dual L! moments,

sup/ T K(t,T)e " dt.

7>0
The elementary method from Lemma 3.5 can then be adapted to this
tricky situation. (This is somewhat painful, but the use of the inversion
of the Laplace transform would probably have been quite more painful.)
Finally, there is also a variant which allows to estimate the norms
of all modes separately, and thus to treat the important case v = 1.

Bibliographical notes

Basically all this chapter is taken from [78, Sections 6 and 7], where
more precise computations and estimates are established. (But the ef-
ficiency of fractional exponential moments is not noticed in that refer-
ence.)

The echo experiment appears at the end of the sixties, in [69] (pre-
diction) and [70] (report of experiment); I learnt it from Kiessling. In
fact at first it was spatial echoes which were observed, and it is only
later that temporal echoes could be produced. Nowadays they are used
as an indirect way to measure the strength of irreversible phenomena
going on in a plasma (defect of echo indicates dissipation!), see [96].






CHAPTER 8

Newton’s scheme

In the past two chapters we have examined the two sides of the non-
linear Vlasov equation near equilibrium, first as a transport equation in
a small force field whose regularity improves with time, secondly as the
reaction for a gas forcing an oscillating background which is a perturba-
tion of equililbrium. In both cases we studied the corresponding linear
problem and obtained estimates in gliding regularity that are uniform
in time, at the price of a loss of reqularity, or consequently a loss on
the time decay rate. (Recall that the gliding regularity automatically
implies a time decay on velocity averages.)

Loss of regularity in the solution of the linearized equation is en-
countered in a number of problems and sometimes informally called
the Nash—Moser syndrome. It was overcome in the fifties by Kol-
mogorov (in the proof of his celebrated 1954 theorem of the likely stabil-
ity of trajectories of perturbed completely integrable Hamiltonian sys-
tems) and by Nash (in his celebrated 1956 construction of smooth iso-
metric Riemannian embeddings). In both cases a key idea was to work
out a perturbative analysis based on the Newton iterative scheme
and use the supernatural speed of convergence of this scheme to over-
come the loss of regularity. Nash also showed how to take advantage
of this fast convergence to squeeze in a reqularization at each stage,
giving birth to what is now called the Nash—Moser method, arguably
the most powerful perturbative technique known to this date. Moser
used it to prove Kolmogorov’s theorem in C" regularity.

Still the mighty Newton scheme will save us again. It does not mean
that this is the only solution: History has shown (for the Kolmogorov
theorem and even more for the Nash theorem) that the Newton scheme
can sometimes be replaced by a classical fixed point technique, applied
to a clever reformulation of the problem.

It turns out that the condition of the damping problem is worse
than the usual Nash-Moser syndrome, because the damping problem
“loses” an infinite number of “derivatives”.

99
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8.0. The classical Newton scheme

The general formulation of the Newton scheme is as follows. Let be
given an equation ®(z) = 0, where the unknown z lies in R or in some
Banach space, and the equation should be solved in a neighborhood V'
where the differential D® is invertible. Start from some guess zg and
solve iteratively, approximating ® at each step by its tangent to the
previous approximation. So at step n, the equation to be solved is

(8.1) ®(z,) + DP(2,) - (2ne1 — 2n) =0,

or equivalently
Zn1 = 2n — [DP(2,)] 7 - @(20).

If 2,11 always remains in V' then this procedure defines inductively a
sequence (z,)nen. Clearly if z, converges to z, then from (8.1) we have
®(z) = 0. The claim is that if z, is close enough to the desired solu-
tion, and if ® is twice continuously differentiable, then the convergence
occurs extremely fast. To see this, use the Taylor expansion and (8.1)
to deduce

(8.2)
| D?®]|oo
I ()]l < [|@(z0) + DB(zn) - (s = 20)| + H = i = 2l
D?®||
= %HZM—I — 2%,
where || - ||« is the supremum norm over the domain V.

Plugging (8.2) in the identity ®(z,11)+DP(z41) (2ni2—2n11) =0
yields || D®(2,41) - (2nt2 = 2nt1) || < ([[D?*@|lo/2) 2041 — 2al|?, whence

D®) Y| | D?®|
2012 — Zna1]| < (H( ) H2 ID72] ) [2ns1 = 2al%.

Iteration of the inequality ||z,412 — zny1|| < C ||zng1 — 2a||* yields
(8.3) 12041 = zall < C™ 21 — 20"

Now if ||®(z)| is small enough, then § := ||®(z0)| [|[DP(20)7 " is
strictly less than min(1,1/C), ||z1 — 2| < ¢ and (8.3) implies induc-
tively

12041 — zall < C™ 67"

Then of course (z,) converges to z, and by telescopic summation

|2n — 2| S C™ 6% |1+ C 6 + C* 6% + 36248 . ]
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which is bounded above by 2 C™62" if § is small enough. Up to changing
C, we conclude that

(8.4) |2, — 2|] < C™6*".

That is, the Newton method converges like an iterated exponential
(exponential of exponential). (One often says that the convergence
is quadratic to express the fact that the number of significant digits
doubles at each step, or equivalently that the error at each step is
essentially squared.) All this is subject to the fact that (z,) remains
inside the neighborhood V' where the root z belongs; but in view of the
estimate (8.4), this is clearly the case if z is close enough to z.

8.1. Newton scheme for the nonlinear Vlasov equation

Consider an evolution partial differential equation 0,f = Q(f),
where the unknown is a solution f = (f(¢)):>0 and the initial datum
fi is prescribed. To cast this equation in the setting of the Newton
scheme, define

ot

Then the equation ®(f™) + D®(f") - ("™ — f*) = 0 means
(8.5)

[at]m _ Q(fn)] + at(fn-l—l _ fn) _ Q/(fn) . (fn+1 _ fn) =0
fH0) = f;  for all n.

o) = (5 - Q). 10 - 1),

The first equation is 9, f" ™ = Q(f™) — Q'(f™ 1) - (f™* — f™), but this
is not the most convenient form. It is best to see f™ as made of a series
of successive layers: f* = fO+ h' + ... + h", where the unknowns h"
solve

atthrl _ Q/(fn) X hn+1 + Q(fn) o atfn
= Q)BT QUM Y = QUM = QU -

together with the initial conditions h'(0) = h;, K" (0) = 0.

In the case of the nonlinear Vlasov equation, the nonlinearity is
quadratic, so Q(f"~ !+ ") = Q(f") = Q'(f"1)h" = —F[h"] - VA"
Then we arrive at the Newton scheme for the nonlinear Vlasov
equation near a spatially homogeneous equilibrium f°. First f* =
%) is given, then f™ = fO+ h' + ... + A", where h' solves the
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linearized Vlasov equation
onh!

— +v-V,h' + FR'] -V, ' =0
(8.6) ot
h1(07 ) :fi_f07
and, for any n > 1,
(8.7)
athrl
T Vb F[f"] - Vb 4 FIR™Y -V, f" = —F[h"] - V,h"
hn L0, ) = 0.

In this way the nonlinear Vlasov equation has been reduced to an
infinite list of linear equations, each of which involves a source term
which is quadratic in the solution of the previous equation.

The Newton scheme destroys many of the properties and invariances
of the original equation, however note that it is still in divergence form,
SO

(8.8) Vn>2 Vt>0, // h™(t,z,v) dx dv = 0.

For n = 1 we already know that

vt >0, //hl(t,x,v) dar dv — //(fi ) v) da do.

Now the goal is to study the various layers h". We shall do this in
two stages: short time, large time.

8.2. Short time estimates

PROPOSITION 8.1. Let f° = f(v) be a spatially homogeneous pro-
file satisfying || f°|| zr01 < Co for some \g > 0, and let W be an inter-
action potential with VW € LYT4). If N < A < X and 1 < a < 2,
then there are e, > 0 and T, > 0 such that if f; satisfies

1fi = fOllzan <e,
then for e < e, one has
VneN, Vtel0,T,], A" () || 201 < Ce.

REMARK 8.2. In this short-time estimate, it does not matter whether
we use gliding regularity or not.

The Vlasov equation is a first-order nonlinear partial differential
equation; for such equations there is a general method to establish
short-time analytic estimates, known as the Cauchy—Kowalevskaya
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theory. For our current purposes, we do not need to explicitly appeal
to that theory, and can give a self-contained treatment using the hybrid
analytic norms, with a reqularity index which deteriorates in time. In
the next lemma, d*u/dt = limsup,[u(t + s) — u(t)]/s stands for the
upper right-hand derivative of w.

LEMMA 8.3. Fort small enough,
d+
E"f”zA(t),u(t);l < —c K[|V fll zxmma, At) = A\=Kt, p(t) =p—Kt.

The proof of this lemma is easy and relies mainly on the identity
(d/dt)e* kIt = 2 )| k| eI,

SKETCH OF PROOF OF PROPOSITION 8.1. Let us estimate h" (¢, -)
in a norm Z* Kt —Kt \We get rid of the linear transport term by
using the free transport semigroup, and we are left with the contribu-
tion of the force term. So the estimate of the variation of the norm will
involve several terms, one of which is nonlinear and involves derivatives
of f* and h™™, and one of which comes from the time-variation of the
regularity index; that one is linear and proportional to —|| VA" ||. So

d+ n n n n
(8.9) —llh < =KVE + C VT = OIIVET
+C|IVR"|? + ...

and all the norms are Z 1= Kb int1=K61 " The amount of regularity lost
with time is the same for all indices n, and if A\, p, remain bounded
from below and t is small enough, then these norms control a fixed
norm ZMH1,

Let us see how to estimate (8.9). We shall use the shorthand
|l = [|R]| z2rn-Ktwn-xe1 and assume that

[Rllx, < 6n,

then the goal is to get recursive estimates on d,,. Using (5.9)—(5.10), we
relate the norm of the gradient to the norm of the function, stratifying
at the same time the estimate by bounding each layer A" in a different
norm (the regularity deteriorates with n, so we have more information
for lower indices n). Thus we write

Hv(fn - f0)||>\n+1 < HVhIH>\n+1 + ||h2||>\n+1 +.
171, N VR[],
- Al — An—f—l AQ - An—|—1
(51 62 577,

< + + .
A1 - An—|—1 AQ - An—|—1 )‘n - )‘n-l—l
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Assuming that the sequence (A, — A,41) is decreasing, this is grossly
bounded above by

On

and if that sum is small enough then the second term on the right-
hand side of (8.9) (C'||V(f™ — f9)|| [[VA™!||) is absorbed by the first
one (—K [[VA"]|). After bounding in a similar way the last term on
the right-hand side of (8.9), we end up with something like

C 4?2

(8.11) 01 < W

At this stage we can choose, say, A\, — A\,+1 = A/n? where A is very
small: that is, we allow the regularity to decrease at each step in a con-
trolled way. If >~ n?4, is small enough, then the sum in (8.10) is small
too, so (8.11) holds true, and the recursion relation d,,; < C'n?4§?
implies that &, = O(67") for a < 2, which a posteriori justifies the as-
sumption of smallness of > n?4,. It is easy to conclude by propagating
bounds inductively. 0

8.3. Large time estimates

Now the goal is to go for long-time estimates on the layers A", and
establish

PROPOSITION 8.4. Let f° = f(v) be a spatially homogeneous pro-
file satisfying | fO(n)| = O(e= 2™ and || f°|| z301 < 400, together with
the generalized Penrose stability conditiog\with stability width Ay, > 0.
Let W be an interaction potential with W = O(1/|k|*). Let A\ > 0,
N < min(\, Ao, A\z), >0, a € (1,2); then there is €, > 0 such that if
i satisfies || f; — [l zomn < & < e,, then

VneN, Vt>0  [[h"(t)] g < Ce”.

This is much more tricky than the short-time estimates. In par-
ticular, it will involve a Lagrangian point of view, where we will use
trajectories induced by the force field rather than just free transport;
and it will use the estimates from Chapters 6 and 7. The same global
strategy of stratification of estimates will be useful, but a number of
auxiliary estimates will be propagated. I shall only describe the main
ideas in a sketchy way.

SKETCH OF PROOF OF PROPOSITION 8.4. First the general pic-
ture: Starting from

Q" 0V A BV 0 FIRHY] Y, f" = —F[R"] - V",
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we formally get rid of the term F[f"]-V,h"! by using the characteris-
tics S™ associated with the force field F[f"](t, ). This gives a kind of
reaction equation in the style of (7.1), except that everything is com-
posed with S™. A notable unpleasant consequence is that we lose the
gradient property: (V,f™)oS™ is not a gradient any longer; as a conse-
quence, an additional zero mode will appear in the reaction estimates,
associated with an instantaneous response. Fortunately, this term will
be uniformly bounded in time. The source term, quadratic in A", will
not cause any serious problem.

From there, one sets up a constructive loop in the estimates: If the
characteristics are close to the free transport trajectories, then the flow
will have good mixing properties, and as a consequence the density
will be uniformly smooth and the force will damp to 0. Conversely, if
the force damps, then the characteristics remain close to free transport
trajectories.

To quantify how close the characteristics are from free transport,
one introduces the deflection operators
(8.12) Q=57 085

Tt

where S™ is the flow generated by the force F'[h"].

Now the core of the proof is to estimate simultaneously A" o Q7!
(the density A" along the characteristics generated by f"~!) and p" =
f h™dv (the spatial density). The density p™ is estimated in the natural
gliding regularity: that is, in the space F 7+ at time 7. But the
composed density h" o Q" ! is estimated with a twist on the indices,
depending on the final time ¢: using (5.14), the time velocity and
regularity indices will be modulated by a function

b(t) = B/(1+1)
So the main estimates to propagate are

(8.13) sup 10" (T) | Prnrtin < O, sup Hh:_ZOQZ;lHZAn(le{b),un;l < Op,
720 7_7

t>1>0 S

where 9,, is a sequence of positive numbers which should converge very
fast to 0. I shall write 6 = ¢;: this is an estimate of the final error.

A number of auxiliary estimates will be propagated. Writing ) =
. and h = h(7) for simplicity, the desired estimates are (in appro-
priate norms)

e 0" —1Id and VQ" — I are O(§/7*), uniformly in n;
o 0" —OF and (Q*)7to Q" —1Id are O(d0,/7%), for all k < n (so

these expressions are small as k — oo, uniformly in n);
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o ol VAP0 QM (V, + 7V, )h" 0 Q"1 are all O(dy,), for
all £ <mn;

o V2hF o Q" lis O(726y), for all k < n;
o (V") o Q"1 —V(h" o Q" 1) is O(5,/7°), for all n.

In the above expressions s > 0 is as large as desired; for the sequel it
would be sufficient to choose s = 4, but in these and related estimates
I shall continue to write s, meaning an integer which can change from
line to line and can be fixed arbitrarily large in advance. The possibility
of choosing s large comes from the fact that the deflection estimates of
Chapter 6 are exponentially small in .

Let us see in a sketchy way how this works. To simplify notation, I
shall forget about the x-regularity and the parameter p in the estimate
of the kinetic distribution, and focus on the v-regularity parameter \.
At each stage of the iteration a bit or regularity is lost in v (when I say
a bit, this is still an infinite number of derivatives, but in the parameter
A of analytic regularity this is just a bit): say A\, — A, 1 = A/n? with A
very small. At each stage there are a number of steps and at each step
a little bit is lost, so five or six intermediate indices are used between A,
and A1, 8ay Ay > A >N > 00> A\ g but A, — AL N — ) ete. are
all of the order \,, — A\,,11, so I will just forget about the intermediate
indices and use the fact that these differences are all of order O(1/n?).
Also I shall assume that d; decreases very fast to 0: in fact this can
only be checked a posteriori once all estimates have been performed.

With these conventions in mind, let us sketch the steps of the iter-
ation.

(a) In this step one shows that 2" is asymptotically close to Id.
From ||p"]| s = O(d,) we deduce, as in Chapter 6, a bound on
Qp, —Id. If we do it in gliding regularity about A,i;, then to ap-
ply Proposition 6.1, we need A\, — \,;1 to be at least of order §'/3,
because the force field is of size § (it depends not only on A" but also
on h', k% ...). Of course we cannot afford to lose such a fixed amount
of regularity as n — oco. So we modify the estimates in Proposition 6.1
thy letting the velocity regularity depend on 7 and t: replace Z» by

Z;\f(bi;r(ﬁb), where b(t) = B/(1 +t). This works because

o |[|[F™(t)|| decays faster than A, b(t),

e N\ (1+0) (71— 1%;) < A\, 7, at least for ¢ positive enough. So

we can still estimate the Z;\fg;r(?lrb) norm of the force field by its F =™
norm (recall (5.14)).
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This does not work for small values of ¢, but short times have al-
ready been treated separately, as explained in Section 8.2. In all the
rest of the argument one should consider separately small and not so
small times.

Then, by amplification of the fixed point technique of Chapter 6,
we arrive at

i 5
(8.14) 92, = 1| uasn = O <T—) .
TTI+D

Next, with another fixed point argument, one establishes

5
(8.15) IV, = Il e = O (T—) .

TT1tp

(b) In this step one shows that QF is close to Q" uniformly inn > k.
This is done again by fixed point, and one arrives at something like

)
(8.16) HQZT — QiTHZA”(lbjb) =0 (T—i) )
T 1+p

(The regularity is the worst of A, and A, that is \,; and the size is
the worst of 0, and dj, that is d;.) The important point is that this
estimate goes to 0 as k — oo, uniformly in n. From (8.16) it is deduced

(by fixed point again...)
O
s =0 (%)

bt

1+b

(8.17) |t ) rop, —1a]

(Inversion with a norm of time index 7 is possible only if Q" — QF is
much smaller than 1/7; but this is guaranteed by (8.16).)
In the sequel I shall not always write the indices of the norms.

(c) The next step is to update the controls on the previous layers h*
by taking into account the change of the characteristics; so one should
estimate h* o Q" for all k. This is done by composition:

hk o O — (hk o Qkfl) o ((Qkfl)fl o Qn)7

s0, as a consequence of the induction assumption V(h*o Q1) = O(6;)
and (8.17), we have

[h5 0 Q" — BF 0 Q81| < [V (hF 0 QF 1)) H () oqp, — IH

<O (%)
T
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It follows
(8.18) |AF o )l grnaen = O(0r).

T

1+b

Similar bounds are established for (V,h*)oQ" and ((V,+7V,)h*)oQ",
with just a small loss on the regularity index. Consequently (V,h*)oQ"
is O(7 6;,). Similarly, (VZh*) 0 Q" = O(726y).

(d) Next is the key step where an estimate is obtained for p"*!.
First write the equation for A"*!, then the method of characteristics in
the force field F[f™] yields

t
Pt x) = —/ /(F[h”“] . va”) (7’, St (w, U)) dvdt
0
+ quadratic contribution from A".

To take advantage of the mixing effect of the free transport semigroup,
introduce the deflection 2" by force, rewriting the estimate above as

(8.19)
Pt x) = —/0 /[(F[h”“] Vo f") o Q?T} (z—v(t—7),v)dvdr
+O(n"52),

where the contribution from h™ has been estimated in a crude way.

If it was not for the composition by 2", we would be in the same
situation as in Chapter 7, and we could use the estimates on the Vlasov
equation seen as a reaction equation. But (F[h"T!]-V, f")oQ" does not
have the structure G(t, z) - V,g(t, z,v) which was crucial in Chapter 7.
The problem is to show that composition by 2" does not change much
in the long run.

So we decompose that reaction term as follows:

(8.20)
(F[A"1 - V™) 0 Q2 =F[h™] - ¥, ( o> mo Q’H)

k<n

+ (F[h”“] o Q" — F[h”“]) (Vof" o %)

DS CYUR SRR

k<n

+ Fr]- 3 [(Vyhk) o Q" — (V,h*) o Qk‘l} .

k<n
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The first term on the right-hand side is fine, and the other three terms
will be treated as perturbations in large time, as follows.

e The second term in the right-hand side of (8.20) is estimated as
follows:

HF[hn—l—l] o — F[hn—l—l]H vafn o QnH
< |VERIQ" =1 [[[Vof" o Q"

0T
<ol 2,

where T used |[VF[h" || < C||p"™||: indeed, thanks to the assump-
tion |/I/I7(k;)| = O(1/|k|?), passing from the density to the force should
gain at least one derivative. (Note carefully: Here we cannot afford to
lose regularity on p"*! because we are trying to get a Gronwall-type
estimate on the unknown p"™!, so it is crucial to use the very same
norm on the left-hand side and the right-hand side, and the only thing
we can use to regain the derivative is the smoothing induced by the
convolution inside the force.)

e Next, by recursion hypothesis,
0
HVU(h"’ o QF1) — (V,hF) o Qk‘lH ~0 (—’“) ,
s
which allows to control the third term in the right-hand side of (8.20)
by ||| 6k /7.

e Finally, to handle the last term in the right-hand side of (8.20),
one writes

H (Voh*) 0 Q1 — (V,h*) 0 Q"

< sup [|[VPhFo (1—0)Q" 1 +600")

0<0<1

st — ).

From (8.17) the argument of V2h* is close to Q*~!, uniformly in 6, so
up to a slight loss we end up with a bound like

Ok

|2t o 1|0 — @) < 072 (-) ,
T8

after use of the induction hypothesis on V2h* o Q*~! and the bound
(8.16).
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Plugging all these controls in (8.20) shows

t
PNt ) = —/ F[h.V <f0+th o, 1) r—v(t—7),v)dr dv
0 k<n

n—+1
+0< ﬂﬁ—LMm)+mm&y
0 1 + 75

Then one can operate as in Chapter 7 and get a Gronwall estimate
on |[p"*(7)|| sansa-. The difference is an additional term in the kernel
K(t,7), which is O(6 77*), uniformly in ¢. But this is harmless: think
indeed that a solution of

(w<A+5/t ") g
A o 1+72

satisfies p(t) < A+ C'J. The robustness of the moment estimates from
Chapter 7 and the L? method in Lemma 3.5 makes it possible to adapt
all these estimates to the present complicated situation, yielding in the
end

[ | FAngar = O <e”K n" (52) .
So this step gives

(8.21) Wwwﬁwﬁ:owmnﬁwlzo@“nwﬂ.

This is not as good as d,,,1 = O(2), and does not imply 6, = O(C™ §*")
as in the classical Newton scheme; but this is still compatible with
6, = 0(0""), a < 2.

(e) From the estimate on p"*™! we immediately deduce an estimate
on the force: ||F[A" || paniar = O(6n41)-

(f) Then use the equation for A"*! once more, but now compose
it with Qp_ where 7 is given, and estimate A2 o Qf . This is not so
difficult as Step (d) because now there is no need to use the same norm
on both sides: we already have an estimate on the force, we don’t need
any Gronwall-type inequality, we can afford to lose a little bit on the
regularity of h"™! compared with the regularity of p"*!. After some
computations, one gets something like

= O((S +1).
Zz\n(lbtb) n

T—

(8.22) )

n+1 n
hT © Qtﬂ'

T+b

(g) Deduce (by gliding regularity) that
(8.23) V(h!*' o)) = O(6pq17), VAR o Q) ) = 00 T°).
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(h) Deduce that
(VA™1) 0 Q" = (V)L V(" 0 Q) = O(6,41 7),
and similarly V2h"t! o Q" = O(4,,1 7). Finally, note that
|vroam — (wrry o || < W@ — 1a)|| [T 0 07

<C (6) (On417),

=

so at the same time this is small like O(6,,11), and it decays fast in 7.

Once this is done, all the estimates have been propagated from
stage n to stage n + 1, and we can go on! O

8.4. Main result

Once we have obtained the estimates on all A", it is easy to conclude
the proof of Theorem 4.1. Let us sketch the argument. Summing the
estimates on all h"™, one obtains the uniform bound

8:20)  sup|lf(t ) — Ol +5uplp— ol = O(9).
t>0 t>0

This bound is the true main result: actually, it contains much more
information than Theorem 4.1. It implies that the force F(¢, ) satis-
fies ||F'(t)||zne+x = O(0), and since F' is a gradient, the latter bound
implies that F'(t) decays exponentially fast with £. On the other hand,
V.f grows at most linearly in ¢, so F' -V, f decays exponentially fast
in gliding regularity. This implies that (d/dt) f(t,x + vt,v) also decays
exponentially; in particular, f(¢, z+vt,v) has a large-time limit g(x,v),
which is analytic, and the convergence actually holds in an appropriate
Z function space. As a consequence, f(t,z,v) has the same asymp-
totic behavior as g(z — vt,v), which converges weakly to (g)(v). The
conclusion of Theorem 4.1 follows easily.

I shall conclude with a few indications on non-analytic data (Theo-
rem 4.3). It was noted in Chapter 7 that the expected loss of regularity
is like a fractional exponential, say elé/*. So it is expected that all re-
sults hold true in Gevrey-v regularity for any v > 1/a.

All the large-time estimates can indeed be adapted to this setting,
either by changing all our norms to handle Gevrey regularity, or by
decomposing a Gevrey function into a sum of analytic contributions
with analyticity width going to 0 in a controlled way. In practice, we
decompose the initial datum f; — f° in a sum of data h?, such that
h} satisfies some analyticity condition in a strip of width A, and the

n
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norm of A} decays in a controlled way as n — oco. Then we use h' as
an initial datum in the step n of the Newton scheme. Of course our
large time estimates on A" only hold in regularity less than A/, but the
way A/, goes to 0 is controlled, so in the end we can reconstruct Gevrey
regularity for > h™, losing just a bit on the Gevrey exponent in the
process. Then the iteration can be performed as in the analytic case.

Bibliographical notes

Newton presented his approximation scheme in a 1669 treatise [82]
which was published only decades later. The presentation and the
study of the scheme were revised and improved by a series of English
mathematicians: Wallis, Raphson, Simpson, Cayley. An ancestor of the
Newton scheme is the so-called Babylonian method for the numerical
solution of square roots, which some experts conjecture to have been
known to Babylonian mathematicians as early as 1900 BC, and to
Indian mathematicians before 800 BC: to compute e.g. /2 apply the
Newton scheme to the function ®(x) = 2% — 2.

Kolmogorov’s perturbation theorem for Hamiltonian systems was
announced in [56] in analytic regularity, and Nash’s embedding the-
orem appeared in [80]. Kolmogorov’s sketchy proof did not convince
everybody at the time, which was very fortunate since it motivated
Moser to devise his own proof [76, 77| in a differentiable setting, using
Nash’s work as an inspiration. Around the same time, Kolmogorov’s
analytic result was, after all, validated by Arnold [5] with an alterna-
tive proof. Much later, Chierchia [27] reconstructed the details of was
is likely to have been Kolmogorov’s original argument. Chierchia wrote
a survey of KAM theory for the online encyclopedia Scholarpedia [28].

The Nash—Moser technique is the main subject of [3]. For the proof
of the core Nash-Moser theorem, one may consult [94].

A fixed point approach to the KAM theory was proposed by Herman
[47]; while it does not seem to apply in full generality, it does suffice
to cover certain simple situations. A fixed point approach to Nash’s
embedding theorem was devised by Giinther [41].

The Cauchy-Kowalevsakaya method is presented in a number of
sources; Nirenberg’s presentation [83] is based on a Newton scheme,
and is close in spirit to the treatment sketched in these notes, whose
details are provided in [78]. (I learnt about Nirenberg’s work from
Klainerman, Alinhac and Gérard after [78] was written.) Once again,
after a few years, Nirenberg’s use of a Newton scheme has been replaced
by a fixed-point theorem [84], and maybe this will also happen some
day for our theory of Landau damping.
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Short-time analyticity estimates on the solutions of the Vlasov-
Poisson equation go back to Benachour [13], with an alternative method.

A few remarks about Lemma 8.3 can be made. Differentiation of
the norm with respect to time-dependent integrability index is classical
in the field of hypercontractivity [40]. Differentiation with respect to a
time-dependent regularity index is not so common, but appears in the
work of Chemin [26] on the short-time regularity of the incompressible
Navier—Stokes system.

The long-time analysis of the Newton scheme is performed in painful
detail in [78]. The adaptation to Gevrey data is sketched in the same
source. As I learnt later, Moser already used the idea to decompose
a smooth, nonanalytic function h into a sum of analytic functions A"
whose norm and analyticity width decay in a controlled way as n — oo.






CHAPTER 9

Conclusions

The main result in this course is that Landau damping survives
nonlinearity, and the long-time behavior of the linearized Vlasov equa-
tion is, after all, a good approximation of the long-time behavior of
the nonlinear Vlasov equation. This ends up a controversy and pro-
vides an answer to the objection formulated by Backus half a century
ago. In the end Landau was right, although the proof involves many
ingredients which were inaccessible at his time.

Remarkably, the range of interactions which are admissible in the
main result includes the Poisson coupling (repulsive or attractive) as a
limit case.

Moreover, the theory provides an interpretation of Landau damp-
ing: this is a relaxation by mixing, confinement and smoothness.
The mixing transport equation converts smoothness into decay, in the
spirit of Fourier transform (Riemann—Lebesgue lemma). Regular-
ity goes away from the v variable to the x variable, so the force becomes
very smooth, and because it has a gradient structure this implies time
decay. A global stability condition has to be imposed on the linearized
problem; this is what I called the generalized Landau—Penrose, or just
generalized Penrose condition.

To handle this leak of regularity, the notion of gliding regularity was
presented in these notes: the regularity is quantified by comparison to
the solution of the free transport equation, at some time.

Even though the solution of the linearized problem involves a loss
of gliding regularity (which implies relaxation), regularity estimates
survive the nonlinear perturbation by a mathematical (rather than
physical) phenomenon comparable to the KAM theory, which takes
advantage of the complete integrability of the original system (in our
case the linearized Vlasov equation) and a Newton scheme to overcome
the loss of regularity.

In this sense the proof provides an unexpected bridge between three
of the most famous paradoxical statements from classical mechanics in
the twentieth century: Landau damping, KAM theory, and the echo

115



116 9. CONCLUSIONS

experiment. This is all the more remarkable that this bridge only ap-
pears in the treatment of the nonlinear Vlasov equation, while Landau
was dealing specifically with the linearized equation.

The fully constructive property of the Newton scheme allows to
construct the asymptotic state, opening the door to asymptotic studies.
For instance, one can construct in this way heteroclinic trajectories of
the nonlinear Vlasov equation (solutions are automatically homoclinic
at order 2 in the perturbation size e; but heteroclinic corrections of
order O(g%) can appear). This shows that the asymptotic behavior
cannot be predicted on the basis on invariants of motion alone: indeed,
these invariants are all preserved by the reversal of velocities, which
amounts to a change of the direction of time.

Another striking feature of our proof is that, compared to KAM
theory, the loss of regularity is much more severe in the present case:
infinitely many derivatives are lost, corresponding to a fractional ex-
ponential in Fourier space. Such high losses prevent the application of
the classical Nash—Moser regularization scheme; for this reason in par-
ticular, we have not been able to establish nonlinear Landau damping
below a certain Gevrey regularity.

The issue of nonlinear Landau damping for less smooth data ap-
pears wide open. In a recent contribution, Lin proved that one cannot
hope for Landau damping in low regularity, that is, with less than 2
derivatives in an appropriate Sobolev space. Indeed, in such a low
regularity topology, BGK waves are dense around stable homogeneous
equilibrium profiles; so damping to a homogeneous state might still be
true for typical solutions, but cannot hold over a whole neighborhood
of the equilibrium.

Another development of interest would be the adaptation of Lan-
dau damping theory to other models sharing some similar features. For
the most natural candidate, the two-dimensional incompressible Euler
equation, this turns out to be much more difficult than could be ex-
pected; one reason for this is that the damping rate is so slow that the
deflection estimates are terrible.

Yet another interesting issue would be to understand Landau damp-
ing when the geometry of the asymptotic flow in phase space is more
complicated than the periodic shear flow geometry induced by free
transport. Since in principle the main ingredients are confinement and
phase mixing, one may expect Landau damping to hold in a general
situation where these two properties are satisfied, and it would be easy
to cook up such model equations. But then the so handy Fourier trans-
form cannot be used, so the proof may be much more complicated.
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The benchmarking of reliable long-time numerical schemes, the
study of the linear and nonlinear stability of BGK waves, the qualita-
tive study of large perturbations of equilibrium, the statistical theory
of the Vlasov—Poisson equation, remain wide open fascinating subjects.

Bibliographical notes

KAM type problems with a loss of infinitely many derivatives (mul-
tiplication by a fractional exponential in Fourier space) have been con-
sidered by Popov [88]; in this case (as I learnt from Chierchia and
Péschel) nobody knows how to treat C” regularity in the style of Moser
[76].

Heteroclinic solutions of the nonlinear Vlasov equation are con-
structed in [78, Section 14].

Lin’s negative results are presented in [63]. The precise statement
is that there is density in W'*1/PP+0 topology for any p € (1, 00).

A preliminary discussion of nonlinear Landau damping for two-
dimensional incompressible Euler equation was performed by Bouchet
and Morita [17]. Together with Mouhot, we tried to put this on rig-
orous footing by adapting the study of the nonlinear Vlasov equation,
but stumbled upon formidable difficulties, even in the simple case of a
perturbation of a linear shear flow [79].
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